目录
1、简介
在科研工作中,尤其是从事机器学习和深度学习的朋友们,经常会遇到一个困惑——该选择哪种优化算法来优化模型?虽然如今的算法种类繁多,但每种算法的效果和使用场景都不尽相同,如何选择适合自己研究的优化算法,常常让大家感到非常困惑。
不仅如此,算法的发布时间也是选择时必须要考虑的重要因素之一。因为随着时间的推移,新算法的出现往往会提供更高的效率或者更好的效果,这对于模型的优化至关重要。
为了帮助大家更清楚地了解不同优化算法的特点以及它们在实际应用中的表现,本推文将对2024年推出的10种优化算法进行详细对比分析。
2、测试函数结果对比
本推文将从以下几个方面对这些算法进行全面的比较:
1、算法效果对比
我们从优化效果的稳定性、收敛速度和精度等多个维度出图,分析各个算法的测试结果,帮助大家选择适合自己研究任务的最佳算法。
2、测试函数结果对比
对于每种优化算法,我们将展示其在经典测试函数上的测试结果。这包括每种算法在基准测试函数上的适应度值和收敛情况。这一部分将展示不同算法在优化问题中的具体表现,帮助大家更直观地了解它们的实际效果。
3、运行时间对比
优化算法的计算效率是很多伙伴非常关注的因素。我们将在同样的硬件环境下,比较各个优化算法的运行时间。通过详细的时间对比,大家可以了解不同算法在实际应用中的计算复杂度,选择出既能提供高效结果,又不至于浪费大量计算资源的优化算法。
4、适应度曲线分析
我们将绘制每种优化算法在测试函数中的适应度曲线,展示它们在训练过程中适应度的变化趋势。适应度曲线能够反映算法的收敛速度和稳定性,帮助大家判断哪种算法更适合自己的任务需求,哪些算法在训练过程中容易陷入局部最优或收敛较慢。
5、算法的发布时间(需要原文献可以私信)
新算法的推出往往伴随着新的理论创新和技术突破,这可能直接影响算法的效果和实用性。我们将对2024年发布的10种优化算法的创新点进行总结,帮助大家把握最新的技术动向。
通过以上分析,提供了算法效果的对比,帮助大家更全面地理解每种优化算法的实际表现。这些对比分析将为大家在优化算法的选择上提供科学的依据,帮助选择出最适合自己任务的优化算法,从而提升科研效率与成果。
性能评估(部分)
采用CEC2005的 23 个基准测试函数进行了实验,其中10各算法包括美洲狮算法 (PO)、加权平均优化 算法(WAA)、黑翅鸢算法 (BKA)、冠豪猪优算法(CPO)、足球队训练 算法(FTTA)、四向量优化算法(FVIM)、河马优化算法(HO)、常青藤算法(IVY)、牛顿拉夫逊算法(NRBO) 和指数三角优化算法(ETO) 。此处放出7个差别较大的测试函数进行展示。
其中适应度曲线对比图中的放大窗口-“Zoomed-in view ”可以自定义拖动放大位置,且是单独部分!
3、代码定制
可定制相关优化模型(分类、回归、时序预测、分解等):
1.优化单独模型类:BP、RBF、SVM、LSSVM、ELM、KELM、DELM、RELM、HKELM、DHKELM、RF、DNN、DBN、LSTM、BiLSTM、GRU、BiGRU、PNN、ANN、RNN、GRNN、CNN、XGBoost、Adaboost、LightGBM、TCN、BiTCN、ESN、Transformer、Bagging、GBT等
2.优化组合预测类(可任意搭配):Bagging/CNN/TCN/BiTCN/DBN/Transformer/Adaboost结合SVM、LSSVM、GBT、ANN、ELM、KELM、LSTM、BiLSTM、GRU、BiGRU、Attention机制类等
3.分解类:VMD、MVMD、EMD、EEMD、CEEMDAN、ICEEMDAN、REMD、FEEMD、TVFEMD、SVMD、FMD、SSA等分解模型均可
4.分解模型搭配机器学习或者深度学习(单模型或者组合模型)例如(光伏、风电功率等方向用的较多):VMD-LSTM、VMD-Transformer、Bayes-VMD-LSTM/Transformer、Bayes-VMD-Bayes-Transformer(双优化)等等均可
5.锂电池容量提取和剩余寿命预测(SOH/SOC):LSTM、BiLSTM、GRU、BiGRU、Transformer、Transformer-LSTM等等、
4、代码获取
点击下方了解更多!