【开篇】初等数论及其核心内容
一、初等数论的发展历史简介
数学是一门很关注数与形的学科,它们是最基础、最久远的数学概念。克罗内克说过:“上帝创造了自然数,其它都是人的作品”,所以我们选择从数开始说起。数论(Number Theory)专门研究自然数(或整数),这个看似无意义的智力游戏,其实不光是数学家们的思维乐园,它更是孕育新思想、新方法的肥沃土壤。即使我们已经有了耀眼的成就,却好像还不曾见过她的真面目,在其简单的外表下,总有不为人知的深邃。高斯曾经说过:“数学是科学的皇后,而数论则是数学的皇后”,下面就让我们来看看它的一些发展历史。
数论最开始的称号就是我们所熟悉的算术,在古希腊时期就有了初步的发展。欧几里得的《几何原本》中就有了一些经典的结论,比如素数有无穷多个,还有大家熟悉的辗转相除法。包括同时期的素数筛选法,对后来的数论研究都很有启发性。古希腊末期的丢潘图唯独偏爱不定方程,所著的《算术》对数进行了超乎想象的讨论。也正是这本书,为今后的数论埋下了神奇的种子。当欧洲文明
本文介绍了初等数论的发展历史,从古希腊时期的欧几里得到高斯的《算术研究》,揭示了数论在数学中的重要地位。初等数论主要研究整数理论,包括解整数方程和素数分布问题。文章概述了解整数方程的五种方法,如辗转相除法和唯一分解法,并提到了重要的数论定理,如中国剩余定理和二次互反律。
订阅专栏 解锁全文
3119

被折叠的 条评论
为什么被折叠?



