【开篇】初等数论及其核心内容

本文介绍了初等数论的发展历史,从古希腊时期的欧几里得到高斯的《算术研究》,揭示了数论在数学中的重要地位。初等数论主要研究整数理论,包括解整数方程和素数分布问题。文章概述了解整数方程的五种方法,如辗转相除法和唯一分解法,并提到了重要的数论定理,如中国剩余定理和二次互反律。
摘要由CSDN通过智能技术生成

【开篇】初等数论及其核心内容

 

一、初等数论的发展历史简介

数学是一门很关注数与形的学科,它们是最基础、最久远的数学概念。克罗内克说过:“上帝创造了自然数,其它都是人的作品”,所以我们选择从数开始说起。数论(Number Theory)专门研究自然数(或整数),这个看似无意义的智力游戏,其实不光是数学家们的思维乐园,它更是孕育新思想、新方法的肥沃土壤。即使我们已经有了耀眼的成就,却好像还不曾见过她的真面目,在其简单的外表下,总有不为人知的深邃。高斯曾经说过:“数学是科学的皇后,而数论则是数学的皇后”,下面就让我们来看看它的一些发展历史。

  数论最开始的称号就是我们所熟悉的算术,在古希腊时期就有了初步的发展。欧几里得的《几何原本》中就有了一些经典的结论,比如素数有无穷多个,还有大家熟悉的辗转相除法。包括同时期的素数筛选法,对后来的数论研究都很有启发性。古希腊末期的丢潘图唯独偏爱不定方程,所著的《算术》对数进行了超乎想象的讨论。也正是这本书,为今后的数论埋下了神奇的种子。当欧洲文明

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

smilejiasmile

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值