# Pie

Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 778 Accepted Submission(s): 299

Problem Description
My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though.

My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size.

What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.

Input
One line with a positive integer: the number of test cases. Then for each test case:
---One line with two integers N and F with 1 <= N, F <= 10 000: the number of pies and the number of friends.
---One line with N integers ri with 1 <= ri <= 10 000: the radii of the pies.

Output
For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 10^(-3).

Sample Input
3
3 3
4 3 3
1 24
5
10 5
1 4 2 3 4 5 6 5 4 2

Sample Output
25.1327
3.1416
50.2655

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define pi  acos(-1)  //新学的一个函数，包含在头文件cmath中
double s[10001];
int main()
{
int cas,p,n,r;
cin>>cas;
while(cas--)
{
scanf("%d %d",&n,&p);
double  sum=0;
int r1;
for(int i=1;i<=n;i++)
{
scanf("%d",&r1);
s[i]=r1*r1*pi;
sum+=s[i];
}
p++;
double l=0,r=sum/p,mid;
int num=0;
while(r-l>=1e-6)
{
num=0;
mid=(r+l)/2.0;

for(int i=1;i<=n;i++)
num+=(int)(s[i]/mid);  ///这段代码我简直是膜拜啊，，注意强制转换不要写成(int)s[i]/mid；

if(num<p)     //对应的饼数<人数，说明一张饼分大了
r=mid;
else
l=mid;
}
printf("%.4lf\n",mid);
}
return 0;
}

08-04 701

12-15 5349

07-16 798

02-02 191

04-29 272

07-31 262

01-24 107

09-10 63

08-03 123

07-21 345