# Prime Ring Problem（判断素数的几种方法）

A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

Note: the number of first circle should always be 1.

Inputn (0 < n < 20).
OutputThe output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

You are to write a program that completes above process.

Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4

Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2

#include<cstdio>
#include<string.h>
void isPrime(int a);
void dfs(int cur);
void show();
bool prime[45];
bool book[25];
int an[25];
int n;
int main()
{
int cnt;
cnt=0;
while(scanf("%d",&n)!=EOF)
{
memset(prime,true,sizeof(prime));
memset(book,true,sizeof(book));
memset(an,0,sizeof(an));
an[0]=1;
isPrime(2*n);
printf("Case %d:\n",++cnt);
dfs(1);
putchar('\n');
}
return 0;
}
void isPrime(int a)
{
int i,j;
for(i=2;i<a;i++)
{
for(j=i*i;j<a;j+=i)
prime[j]=false;
}
}
void dfs(int cur)
{
if(cur==n)
{
if(prime[1+an[n-1]])
show();
return ;
}
for(int j=2;j<=n;j++)
{
if(book[j]&&prime[an[cur-1]+j])
{
an[cur]=j;
book[j]=false;
dfs(cur+1);
book[j]=true;
}
}
}
void show()
{
int i;
for(i=0;i<n-1;i++)
printf("%d ",an[i]);
printf("%d\n",an[n-1]);
}

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120