# 矩阵乘法计算脚本代码（C#）

using System;
using System.Collections.Generic;
using System.Windows.Forms;

class Script
{
public class Matrix
{
public List<List<int>> array = null;
public int Row
{
get
{
return array.Count;
}
}
public int cln
{
get
{
return array[0].Count;
}
}
public Matrix(List<List<int>> d)
{
array = d;
}
public Matrix(int row, int cln)
{
array = new List<List<int>>(row);
for (int i = 0; i < row; i++)
{
List<int> c = new List<int>();
for (int j = 0; j < cln; j++)
{
}
}
}

static private int js(ref List<List<int>> b1, ref List<List<int>> b2, int i, int j)
{
int s = 0;

for (int q = 0; q < b1[0].Count; q++)
{
s += b1[i][q] * b2[q][j];
}
return s;
}
static public Matrix operator *(Matrix m1, Matrix m2)
{
if (m1.cln != m2.Row)
{
throw new System.ArgumentOutOfRangeException("行列式不符合规范");
}

int row = m1.Row, cln = m2.cln;
Matrix res = new Matrix(row, cln);

for (int i = 0; i < row; i++)
{
for (int j = 0; j < cln; j++)
{
res.array[i][j] = js(ref m1.array, ref m2.array, i, j);
}
}
return res;
}
static public Matrix operator *(int l, Matrix m2)
{
int row = m2.Row, cln = m2.cln;
Matrix res = new Matrix(row, cln);

for (int i = 0; i < row; i++)
{
for (int j = 0; j < cln; j++)
{
res.array[i][j] = l * m2.array[i][j];
}
}
return res;
}
static public Matrix operator *(Matrix m2, int l)
{
int row = m2.Row, cln = m2.cln;
Matrix res = new Matrix(row, cln);

for (int i = 0; i < row; i++)
{
for (int j = 0; j < cln; j++)
{
res.array[i][j] = l * m2.array[i][j];
}
}
return res;
}

static public void Show(Matrix m)
{
for (int i = 0; i < m.Row; i++)
{
for (int j = 0; j < m.cln; j++)
{
Console.Write("{0},", m.array[i][j]);
}
Console.WriteLine("\n");
}
}
/// <summary>
/// 矩阵转置操作
/// </summary>
/// <returns></returns>
public void Transport()
{
int temp;
for (int i = 0; i < this.cln; i++)
{
for (int j = 0; j < this.Row; j++)
{
temp = this.array[i][j];
this.array[i][j] = this.array[j][i];
this.array[j][i] = temp;
}
}
}
/// <summary>
/// 返回转置矩阵
/// </summary>
/// <param name="m">原矩阵</param>
/// <returns>返原矩阵的转置矩阵</returns>
static public Matrix TransportNew(Matrix m)
{
Matrix res = new Matrix(m.cln, m.Row);
for (int i = 0; i < res.Row; i++)
{
for (int j = 0; j < res.cln; j++)
{
res.array[i][j] = m.array[j][i];
}
}
return res;
}
public void Show()
{
Matrix.Show(this);
}
}

static public void Main(string[] args)
{
Matrix m1 = new Matrix(new List<List<int>>() { new List<int>() { 1, 2, 0 }, new List<int>() { 3, -1, 1 } });
//Matrix m2 = new Matrix(new List<List<int>>() { new List<int>() { 4, 1, 0 }, new List<int>() { -1, 1, 3 }, new List<int>() { 2, 0, 1 }, new List<int>() { 1, 3, 4 } });
//Matrix m1 = new Matrix(new List<List<int>>() { new List<int>() { -2, 4 }, new List<int>() { 1, -2 } });

//Matrix m2 = new Matrix(new List<List<int>>() { new List<int>() { 1, 0 }, new List<int>() { 0, 1 } });
//Matrix resM1M2 = m1 * m2;
//Matrix resM2M1 = m2 * m1;
//Matrix res3M1 = m1 * 3;
Console.WriteLine("m1:\n");
Matrix.Show(m1);

Console.WriteLine("m1的转置矩阵:\n");
Matrix m1T = Matrix.TransportNew(m1);
Matrix.Show(m1T*m1);
//Console.WriteLine("res M1*M2:\n");
//Matrix.Show(resM1M2);
//Console.WriteLine("res M2*M1:\n");
//Matrix.Show(resM2M1);
}
}


©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客