了解有关生物识别设备的硬件要求,例如用于支持 Windows Hello 的红外线相机和指纹读取器。
术语
术语 | 定义 |
---|---|
错误接受率 (FAR) | 表示生物识别解决方案验证未经授权的人员的实例数。这通常用实例数在给定人口规模中的比率来表示,例如 1 比 100 000。这也可以表示为发生百分比,例如:0.001%。该算法非常重要,因为它涉及生物识别算法的安全性。 |
正确接受率 (TAR) | 表示生物识别解决方案验证已授权的用户是否正确的实例数。这通常用百分比表示。始终使正确接受率和错误拒绝率的总和保持为 1。 |
错误拒绝率 (FRR) | 表示生物识别解决方案未能验证已授权的用户是否正确的实例数。通常用百分比表示,正确接受率和错误拒绝率的总和为 1。 |
可信度 | 声明 FAR 的可信度表示验证声明 FAR 时执行的分析的可靠性。根据目标或声明的 FAR 以及目标用例的重要性,可信度级别可能发生变化。 |
生物识别示例 | 这是指执行验证操作所需的完整生物识别示例。例如,需要单个指纹才能执行验证。对于虹膜,如果算法要求两只眼睛进行验证,那么这两只眼睛都将被视为生物识别示例。如果只需要一只眼睛进行匹配,那么每只都可以视为单独的生物识别示例。 |
生物识别欺骗 | 这是指生物识别的合成副本示例。为了防止欺骗,反欺骗和活动检测系统应该能够阻止以下与生物识别形式相关的欺骗类型:
|
指纹读取器要求
大面积传感器(传感器矩阵为 160x160 像素或更高,dpi 为 500 或更高)
- FAR < 0.001%
- 无需反欺骗或活动检测的 FRR < 5%
- 使用反欺骗或活动检测的有效实际 FRR < 10%
- 需要采取反欺骗措施。
- 首选配置反欺骗措施。
小面积传感器(传感器矩阵小于 160x160 像素,dpi 为 500 或更高)
- FAR < 0.002%
- 无需反欺骗或活动检测的 FRR < 5%
- 使用反欺骗或活动检测的有效实际 FRR < 10%
- 需要采取反欺骗措施。
- 首选配置反欺骗措施。
轻扫传感器
- FAR < 0.002%
- 无需反欺骗或活动检测的 FRR < 5%
- 使用反欺骗或活动检测的有效实际 FRR < 10%
- 需要采取反欺骗措施。
- 首选配置反欺骗措施。
面部特征识别要求
- FAR < 0.001%
- 无需反欺骗或活动检测的 FRR < 5%
- 使用反欺骗或活动检测的有效实际 FRR < 10%
- 需要采取反欺骗措施。
- 首选配置反欺骗措施。
虹膜特征识别要求
- FAR < 0.001%
- 无需反欺骗或活动检测的 FRR < 5%
- 使用反欺骗或活动检测的有效实际 FRR < 10%
- 需要采取反欺骗措施。
- 首选配置反欺骗措施。
FAR 声明的可信度
尽管我们目前不需要第三方验证 FAR 声明,但是我们需要合作伙伴提供验证 FAR 声明时需采取的步骤指南。
如果 FAR 声明小于 0.001%,我们需要 96% 或更高的可信度。如果 FAR 声明介于 0.001% 到 0.002%之间,我们需要 96% 或更高的可信度。
为简单起见,可信度可以通过简单直接的数据收集和实验性测试来计算。通常,30 条规则最适用于验证级别为 96% 时的可信度。
在此情况下,尽可能多地执行唯一比较以获得 30 条错误。在这种情况下,错误表示两个唯一示例归类为同一个示例(如错误接受)的事件。
一旦出现 30 条错误,可以按如下所示计算可信度:
Conf=1-1/((比较数)×FAR)
其中,FAR 是所需的错误接受率
Conf 是所需的可信度
有关此计算的示例,请参阅下面的附录。
附录
验证声明 FAR 中的特特定可信度级别所需的比较数如下所示:
唯一比较数=C=1/((1-Conf) )×1/((FAR) )
其中,FAR 是所需的错误接受率
Conf 是所需的可信度
例如,可信度为 96% 时,所需的 FAR 为 0.001%
唯一比较数=C=1/((1-0.96) )×1/((0.00001) )
C =30 ×100 000
C =3 000 000
在此情况下,需要 3,000,000 次比较才能达到声明 FAR 中的所需可信度。
若要确定为了实现这些比较而收集的唯一生物识别示例数 n,可使用以下公式。
比较数=n!/2(n-2)!
C =n(n-1)/2
∴n^2-n= 2C
其中,n 是唯一生物识别示例的数量
当 n^2>>n 时,上面的公式可以简化为
n^2≈2C
∴n ≈ √2C
继续看上述示例,所需唯一生物识别示例数为
n ≈ √(2×3000000)
n ≈2 450
也就是说,需要大约 2,450 个唯一生物识别示例才能验证声明 FAR 中的可信度。