【Codeforces Round 333 (Div 2)C】【最短路】The Two Routes 完全图两种双向边的最小最大距离

版权声明:题解中哪里写错请一定要指出来QwQ 转载还请注明下出处哦,谢谢^_^ https://blog.csdn.net/snowy_smile/article/details/50041203
C. The Two Routes
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

In Absurdistan, there are n towns (numbered 1 through n) and m bidirectional railways. There is also an absurdly simple road network — for each pair of different towns x and y, there is a bidirectional road between towns x and y if and only if there is no railway between them. Travelling to a different town using one railway or one road always takes exactly one hour.

A train and a bus leave town 1 at the same time. They both have the same destination, town n, and don't make any stops on the way (but they can wait in town n). The train can move only along railways and the bus can move only along roads.

You've been asked to plan out routes for the vehicles; each route can use any road/railway multiple times. One of the most important aspects to consider is safety — in order to avoid accidents at railway crossings, the train and the bus must not arrive at the same town (except town n) simultaneously.

Under these constraints, what is the minimum number of hours needed for both vehicles to reach town n (the maximum of arrival times of the bus and the train)? Note, that bus and train are not required to arrive to the town n at the same moment of time, but are allowed to do so.

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 400, 0 ≤ m ≤ n(n - 1) / 2) — the number of towns and the number of railways respectively.

Each of the next m lines contains two integers u and v, denoting a railway between towns u and v (1 ≤ u, v ≤ n, u ≠ v).

You may assume that there is at most one railway connecting any two towns.

Output

Output one integer — the smallest possible time of the later vehicle's arrival in town n. If it's impossible for at least one of the vehicles to reach town n, output  - 1.

Sample test(s)
input
4 2
1 3
3 4
output
2
input
4 6
1 2
1 3
1 4
2 3
2 4
3 4
output
-1
input
5 5
4 2
3 5
4 5
5 1
1 2
output
3
Note

In the first sample, the train can take the route  and the bus can take the route . Note that they can arrive at town 4 at the same time.

In the second sample, Absurdistan is ruled by railwaymen. There are no roads, so there's no way for the bus to reach town 4.


#include<stdio.h>
#include<string.h>
#include<ctype.h>
#include<math.h>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T> inline void gmax(T &a,T b){if(b>a)a=b;}
template <class T> inline void gmin(T &a,T b){if(b<a)a=b;}
const int N=400+5,M=0,Z=1e9+7,ms63=1061109567;
int n,m;
int x,y;
bool a[N][N];
bool vis[N];
int BFS(bool w)
{
	MS(vis,0);
	queue< pair<int,int> >q;
	q.push(MP(1,0));
	while(!q.empty())
	{
		int x=q.front().first;
		int step=q.front().second+1;
		q.pop();
		for(int i=1;i<=n;++i)if(!vis[i]&&a[x][i]==w)
		{
			if(i==n)return step;
			q.push(MP(i,step));
			vis[i]=1;
		}
	}
	return -1;
}
int main()
{
	while(~scanf("%d%d",&n,&m))
	{
		MS(a,0);
		for(int i=1;i<=m;++i)
		{
			scanf("%d%d",&x,&y);
			a[x][y]=a[y][x]=1;
		}
		int ans;
		if(a[1][n])ans=BFS(0);
		else ans=BFS(1);
		printf("%d\n",ans);
	}
	return 0;
}
/*
【trick&&吐槽】
这题超水!

【题意】
给你一个完全图。
图上任意两点间都有且仅有一条边。
这条边的类型可以是1或者0。1表示公交,0表示地铁。
我们现在2个人要分别乘坐公交或地铁
现在这2个人都同时要从1点出发,目标是到达n点,到达后便会停在n点。
然而两个人在出发后,在n点之间,不能同时在同一个点。
问你这两个人最早的在n点相遇的时间。

【类型】
最短路

【分析】
"两个人在出发后,在n点之间,不能同时在同一个点。"
这个限制,乍一看会让我们感到很棘手。然而实际上,随便思考下,这个限制便没有了任何意义——
肯定有一条边是1->n,我们通过该交通方式,可以在时间1直接到达n点。
不仅速度最快,而且不会与另外一种交通方式产生冲突。最优。所以我们一定会选它。
这时,我们只需要沿着另外一种交通方式走,求从1到n的最短路,即是答案。

【时间复杂度&&优化】
O(n^2)

*/

阅读更多
换一批

没有更多推荐了,返回首页