8种你必须知道的常见数据结构及其Javascript实现

来源 | https://segmentfault.com/a/1190000020011987

做前端的同学不少都是自学成才或者半路出家,计算机基础的知识比较薄弱,尤其是数据结构和算法这块,所以今天整理了一下常见的数据结构和对应的Javascript的实现,希望能帮助大家完善这方面的知识体系。

1. Stack(栈)


Stack的特点是后进先出(last in first out)。生活中常见的Stack的例子比如一摞书,你最后放上去的那本你之后会最先拿走;又比如浏览器的访问历史,当点击返回按钮,最后访问的网站最先从历史记录中弹出。

Stack一般具备以下方法:

  1. push:将一个元素推入栈顶

  2. pop:移除栈顶元素,并返回被移除的元素

  3. peek:返回栈顶元素

  4. length:返回栈中元素的个数

Javascript的Array天生具备了Stack的特性,但我们也可以从头实现一个 Stack类:

function Stack() {  this.count = 0;  this.storage = {};
  this.push = function (value) {    this.storage[this.count] = value;    this.count++;  }
  this.pop = function () {    if (this.count === 0) {      return undefined;    }    this.count--;    var result = this.storage[this.count];    delete this.storage[this.count];    return result;  }
  this.peek = function () {    return this.storage[this.count - 1];  }
  this.size = function () {    return this.count;  }}


2. Queue(队列)


Queue和Stack有一些类似,不同的是Stack是先进后出,而Queue是先进先出。Queue在生活中的例子比如排队上公交,排在第一个的总是最先上车;又比如打印机的打印队列,排在前面的最先打印。

Queue一般具有以下常见方法:

  1. enqueue:入列,向队列尾部增加一个元素

  2. dequeue:出列,移除队列头部的一个元素并返回被移除的元素

  3. front:获取队列的第一个元素

  4. isEmpty:判断队列是否为空

  5. size:获取队列中元素的个数

Javascript中的Array已经具备了Queue的一些特性,所以我们可以借助Array实现一个Queue类型:

function Queue() {  var collection = [];
  this.print = function () {    console.log(collection);  }
  this.enqueue = function (element) {    collection.push(element);  }
  this.dequeue = function () {    return collection.shift();  }
  this.front = function () {    return collection[0];  }
  this.isEmpty = function () {    return collection.length === 0;  }
  this.size = function () {    return collection.length;  }}


Priority Queue(优先队列)

Queue还有个升级版本,给每个元素赋予优先级,优先级高的元素入列时将排到低优先级元素之前。区别主要是enqueue方法的实现:

function PriorityQueue() {
  ...
  this.enqueue = function (element) {    if (this.isEmpty()) {      collection.push(element);    } else {      var added = false;      for (var i = 0; i < collection.length; i++) {        if (element[1] < collection[i][1]) {          collection.splice(i, 0, element);          added = true;          break;        }      }      if (!added) {        collection.push(element);      }    }  }}

测试一下:

var pQ = new PriorityQueue();
pQ.enqueue(['gannicus', 3]);pQ.enqueue(['spartacus', 1]);pQ.enqueue(['crixus', 2]);pQ.enqueue(['oenomaus', 4]);
pQ.print();

结果:

[  [ 'spartacus', 1 ],  [ 'crixus', 2 ],  [ 'gannicus', 3 ],  [ 'oenomaus', 4 ]]


3. Linked List(链表)


顾名思义,链表是一种链式数据结构,链上的每个节点包含两种信息:节点本身的数据和指向下一个节点的指针。链表和传统的数组都是线性的数据结构,存储的都是一个序列的数据,但也有很多区别,如下表:

一个单向链表通常具有以下方法:

  1. size:返回链表中节点的个数

  2. head:返回链表中的头部元素

  3. add:向链表尾部增加一个节点

  4. remove:删除某个节点

  5. indexOf:返回某个节点的index

  6. elementAt:返回某个index处的节点

  7. addAt:在某个index处插入一个节点

  8. removeAt:删除某个index处的节点

单向链表的Javascript实现:

/** * 链表中的节点  */function Node(element) {  // 节点中的数据  this.element = element;  // 指向下一个节点的指针  this.next = null;}
function LinkedList() {  var length = 0;  var head = null;
  this.size = function () {    return length;  }
  this.head = function () {    return head;  }
  this.add = function (element) {    var node = new Node(element);    if (head == null) {      head = node;    } else {      var currentNode = head;
      while (currentNode.next) {        currentNode = currentNode.next;      }
      currentNode.next = node;    }    length++;  }
  this.remove = function (element) {    var currentNode = head;    var previousNode;    if (currentNode.element === element) {      head = currentNode.next;    } else {      while (currentNode.element !== element) {        previousNode = currentNode;        currentNode = currentNode.next;      }      previousNode.next = currentNode.next;    }    length--;  }
  this.isEmpty = function () {    return length === 0;  }
  this.indexOf = function (element) {    var currentNode = head;    var index = -1;    while (currentNode) {      index++;      if (currentNode.element === element) {        return index;      }      currentNode = currentNode.next;    }
    return -1;  }
  this.elementAt = function (index) {    var currentNode = head;    var count = 0;    while (count < index) {      count++;      currentNode = currentNode.next;    }    return currentNode.element;  }
  this.addAt = function (index, element) {    var node = new Node(element);    var currentNode = head;    var previousNode;    var currentIndex = 0;
    if (index > length) {      return false;    }
    if (index === 0) {      node.next = currentNode;      head = node;    } else {      while (currentIndex < index) {        currentIndex++;        previousNode = currentNode;        currentNode = currentNode.next;      }      node.next = currentNode;      previousNode.next = node;    }    length++;  }
  this.removeAt = function (index) {    var currentNode = head;    var previousNode;    var currentIndex = 0;    if (index < 0 || index >= length) {      return null;    }    if (index === 0) {      head = currentIndex.next;    } else {      while (currentIndex < index) {        currentIndex++;        previousNode = currentNode;        currentNode = currentNode.next;      }      previousNode.next = currentNode.next;    }    length--;    return currentNode.element;  }}4. Set(集合)

集合是数学中的一个基本概念,表示具有某种特性的对象汇总成的集体。在ES6中也引入了集合类型Set,Set和Array有一定程度的相似,不同的是Set中不允许出现重复的元素而且是无序的。

一个典型的Set应该具有以下方法:

  1. values:返回集合中的所有元素

  2. size:返回集合中元素的个数

  3. has:判断集合中是否存在某个元素

  4. add:向集合中添加元素

  5. remove:从集合中移除某个元素

  6. union:返回两个集合的并集

  7. interp:返回两个集合的交集

  8. difference:返回两个集合的差集

  9. subset:判断一个集合是否为另一个集合的子集

使用Javascript可以将Set进行如下实现,为了区别于ES6中的Set命名为MySet:

function MySet() {  var collection = [];  this.has = function (element) {    return (collection.indexOf(element) !== -1);  }
  this.values = function () {    return collection;  }
  this.size = function () {    return collection.length;  }
  this.add = function (element) {    if (!this.has(element)) {      collection.push(element);      return true;    }    return false;  }
  this.remove = function (element) {    if (this.has(element)) {      index = collection.indexOf(element);      collection.splice(index, 1);      return true;    }    return false;  }
  this.union = function (otherSet) {    var unionSet = new MySet();    var firstSet = this.values();    var secondSet = otherSet.values();    firstSet.forEach(function (e) {      unionSet.add(e);    });    secondSet.forEach(function (e) {      unionSet.add(e);    });    return unionSet;  }
  this.interp = function (otherSet) {    var interpSet = new MySet();    var firstSet = this.values();    firstSet.forEach(function (e) {      if (otherSet.has(e)) {        interpSet.add(e);      }    });    return interpSet;  }
  this.difference = function (otherSet) {    var differenceSet = new MySet();    var firstSet = this.values();    firstSet.forEach(function (e) {      if (!otherSet.has(e)) {        differenceSet.add(e);      }    });    return differenceSet;  }
  this.subset = function (otherSet) {    var firstSet = this.values();    return firstSet.every(function (value) {      return otherSet.has(value);    });  }}

5. Hash Table(哈希表/散列表)


Hash Table是一种用于存储键值对(key value pair)的数据结构,因为Hash Table根据key查询value的速度很快,所以它常用于实现Map、Dictinary、Object等数据结构。如上图所示,Hash Table内部使用一个hash函数将传入的键转换成一串数字,而这串数字将作为键值对实际的key,通过这个key查询对应的value非常快,时间复杂度将达到O(1)。Hash函数要求相同输入对应的输出必须相等,而不同输入对应的输出必须不等,相当于对每对数据打上唯一的指纹。

一个Hash Table通常具有下列方法:

  1. add:增加一组键值对

  2. remove:删除一组键值对

  3. lookup:查找一个键对应的值

一个简易版本的Hash Table的Javascript实现:

function hash(string, max) {  var hash = 0;  for (var i = 0; i < string.length; i++) {    hash += string.charCodeAt(i);  }  return hash % max;}
function HashTable() {  let storage = [];  const storageLimit = 4;
  this.add = function (key, value) {    var index = hash(key, storageLimit);    if (storage[index] === undefined) {      storage[index] = [        [key, value]      ];    } else {      var inserted = false;      for (var i = 0; i < storage[index].length; i++) {        if (storage[index][i][0] === key) {          storage[index][i][1] = value;          inserted = true;        }      }      if (inserted === false) {        storage[index].push([key, value]);      }    }  }
  this.remove = function (key) {    var index = hash(key, storageLimit);    if (storage[index].length === 1 && storage[index][0][0] === key) {      delete storage[index];    } else {      for (var i = 0; i < storage[index]; i++) {        if (storage[index][i][0] === key) {          delete storage[index][i];        }      }    }  }
  this.lookup = function (key) {    var index = hash(key, storageLimit);    if (storage[index] === undefined) {      return undefined;    } else {      for (var i = 0; i < storage[index].length; i++) {        if (storage[index][i][0] === key) {          return storage[index][i][1];        }      }    }  }}


6. Tree(树)


顾名思义,Tree的数据结构和自然界中的树极其相似,有根、树枝、叶子,如上图所示。Tree是一种多层数据结构,与Array、Stack、Queue相比是一种非线性的数据结构,在进行插入和搜索操作时很高效。在描述一个Tree时经常会用到下列概念:

  1. Root(根):代表树的根节点,根节点没有父节点

  2. Parent Node(父节点):一个节点的直接上级节点,只有一个

  3. Child Node(子节点):一个节点的直接下级节点,可能有多个

  4. Siblings(兄弟节点):具有相同父节点的节点

  5. Leaf(叶节点):没有子节点的节点

  6. Edge(边):两个节点之间的连接线

  7. Path(路径):从源节点到目标节点的连续边

  8. Height of Node(节点的高度):表示节点与叶节点之间的最长路径上边的个数

  9. Height of Tree(树的高度):即根节点的高度

  10. Depth of Node(节点的深度):表示从根节点到该节点的边的个数

  11. Degree of Node(节点的度):表示子节点的个数

我们以二叉查找树为例,展示树在Javascript中的实现。在二叉查找树中,即每个节点最多只有两个子节点,而左侧子节点小于当前节点,而右侧子节点大于当前节点,如图所示:

一个二叉查找树应该具有以下常用方法:

  1. add:向树中插入一个节点

  2. findMin:查找树中最小的节点

  3. findMax:查找树中最大的节点

  4. find:查找树中的某个节点

  5. isPresent:判断某个节点在树中是否存在

  6. remove:移除树中的某个节点

以下是二叉查找树的Javascript实现:

class Node {  constructor(data, left = null, right = null) {    this.data = data;    this.left = left;    this.right = right;  }}
class BST {  constructor() {    this.root = null;  }
  add(data) {    const node = this.root;    if (node === null) {      this.root = new Node(data);      return;    } else {      const searchTree = function (node) {        if (data < node.data) {          if (node.left === null) {            node.left = new Node(data);            return;          } else if (node.left !== null) {            return searchTree(node.left);          }        } else if (data > node.data) {          if (node.right === null) {            node.right = new Node(data);            return;          } else if (node.right !== null) {            return searchTree(node.right);          }        } else {          return null;        }      };      return searchTree(node);    }  }
  findMin() {    let current = this.root;    while (current.left !== null) {      current = current.left;    }    return current.data;  }
  findMax() {    let current = this.root;    while (current.right !== null) {      current = current.right;    }    return current.data;  }
  find(data) {    let current = this.root;    while (current.data !== data) {      if (data < current.data) {        current = current.left      } else {        current = current.right;      }      if (current === null) {        return null;      }    }    return current;  }
  isPresent(data) {    let current = this.root;    while (current) {      if (data === current.data) {        return true;      }      if (data < current.data) {        current = current.left;      } else {        current = current.right;      }    }    return false;  }
  remove(data) {    const removeNode = function (node, data) {      if (node == null) {        return null;      }      if (data == node.data) {        // node没有子节点        if (node.left == null && node.right == null) {          return null;        }        // node没有左侧子节点        if (node.left == null) {          return node.right;        }        // node没有右侧子节点        if (node.right == null) {          return node.left;        }        // node有两个子节点        var tempNode = node.right;        while (tempNode.left !== null) {          tempNode = tempNode.left;        }        node.data = tempNode.data;        node.right = removeNode(node.right, tempNode.data);        return node;      } else if (data < node.data) {        node.left = removeNode(node.left, data);        return node;      } else {        node.right = removeNode(node.right, data);        return node;      }    }    this.root = removeNode(this.root, data);  }}

测试一下:

const bst = new BST();
bst.add(4);bst.add(2);bst.add(6);bst.add(1);bst.add(3);bst.add(5);bst.add(7);bst.remove(4);console.log(bst.findMin());console.log(bst.findMax());bst.remove(7);console.log(bst.findMax());console.log(bst.isPresent(4));

打印结果:

176false


7. Trie(字典树,读音同try)


Trie也可以叫做Prefix Tree(前缀树),也是一种搜索树。Trie分步骤存储数据,树中的每个节点代表一个步骤,trie常用于存储单词以便快速查找,比如实现单词的自动完成功能。Trie中的每个节点都包含一个单词的字母,跟着树的分支可以可以拼写出一个完整的单词,每个节点还包含一个布尔值表示该节点是否是单词的最后一个字母。

Trie一般有以下方法:

  1. add:向字典树中增加一个单词

  2. isWord:判断字典树中是否包含某个单词

  3. print:返回字典树中的所有单词

/** * Trie的节点 */function Node() {  this.keys = new Map();  this.end = false;  this.setEnd = function () {    this.end = true;  };  this.isEnd = function () {    return this.end;  }}
function Trie() {  this.root = new Node();
  this.add = function (input, node = this.root) {    if (input.length === 0) {      node.setEnd();      return;    } else if (!node.keys.has(input[0])) {      node.keys.set(input[0], new Node());      return this.add(input.substr(1), node.keys.get(input[0]));    } else {      return this.add(input.substr(1), node.keys.get(input[0]));    }  }
  this.isWord = function (word) {    let node = this.root;    while (word.length > 1) {      if (!node.keys.has(word[0])) {        return false;      } else {        node = node.keys.get(word[0]);        word = word.substr(1);      }    }    return (node.keys.has(word) && node.keys.get(word).isEnd()) ? true : false;  }
  this.print = function () {    let words = new Array();    let search = function (node = this.root, string) {      if (node.keys.size != 0) {        for (let letter of node.keys.keys()) {          search(node.keys.get(letter), string.concat(letter));        }        if (node.isEnd()) {          words.push(string);        }      } else {        string.length > 0 ? words.push(string) : undefined;        return;      }    };    search(this.root, new String());    return words.length > 0 ? words : null;  }}

8. Graph(图)


Graph是节点(或顶点)以及它们之间的连接(或边)的集合。Graph也可以称为Network(网络)。根据节点之间的连接是否有方向又可以分为Directed Graph(有向图)和Undrected Graph(无向图)。Graph在实际生活中有很多用途,比如:导航软件计算最佳路径,社交软件进行好友推荐等等。

Graph通常有两种表达方式:

Adjaceny List(邻接列表)

邻接列表可以表示为左侧是节点的列表,右侧列出它所连接的所有其他节点。

和 Adjacency Matrix(邻接矩阵)

邻接矩阵用矩阵来表示节点之间的连接关系,每行或者每列表示一个节点,行和列的交叉处的数字表示节点之间的关系:0表示没用连接,1表示有连接,大于1表示不同的权重。

访问Graph中的节点需要使用遍历算法,遍历算法又分为广度优先和深度优先,主要用于确定目标节点和根节点之间的距离,

在Javascript中,Graph可以用一个矩阵(二维数组)表示,广度优先搜索算法可以实现如下:

function bfs(graph, root) {  var nodesLen = {};
  for (var i = 0; i < graph.length; i++) {    nodesLen[i] = Infinity;  }
  nodesLen[root] = 0;
  var queue = [root];  var current;
  while (queue.length != 0) {    current = queue.shift();
    var curConnected = graph[current];    var neighborIdx = [];    var idx = curConnected.indexOf(1);    while (idx != -1) {      neighborIdx.push(idx);      idx = curConnected.indexOf(1, idx + 1);    }
    for (var j = 0; j < neighborIdx.length; j++) {      if (nodesLen[neighborIdx[j]] == Infinity) {        nodesLen[neighborIdx[j]] = nodesLen[current] + 1;        queue.push(neighborIdx[j]);      }    }  }
  return nodesLen;}

测试一下:

var graph = [  [0, 1, 1, 1, 0],  [0, 0, 1, 0, 0],  [1, 1, 0, 0, 0],  [0, 0, 0, 1, 0],  [0, 1, 0, 0, 0]];
console.log(bfs(graph, 1));

打印:

{  0: 2,  1: 0,  2: 1,  3: 3,  4: Infinity}

本文旨在向广大前端同学普及常见的数据结构,本人对这一领域也只是初窥门径,说的有差池的地方欢迎指出。也希望大家能打牢基础,在这条路上走的更高更远!

发布了43 篇原创文章 · 获赞 70 · 访问量 38万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览