突破性算法:让无人机集群在狭窄空间内穿针引线

导读

在建筑救援、森林搜索等任务中,无人机集群经常会遇到狭窄空间限制和动态障碍物变化等挑战。这些挑战会导致集群内部冲突,或在执行任务时因避让动态障碍物而导致系统混乱。实际应用场景和任务的严格特征往往使得全局搜索难以优化,而局部避障容易陷入僵局。为解决上述问题,本文提出了一种受全局时空路径启发的分层在线协同规划框架。

为了在化解整体冲突的同时降低求解复杂度,系统首先进行全局粗略搜索以获得初始时空指导路径。为了在不影响系统内部和谐的情况下克服动态障碍物,系统执行基于初始路径启发的在线冲突趋势聚类协同优化,以实现避障同时提高可扩展性。

本文在包含狭窄管道和动态障碍物的仿真环境中进行了实验测试,并与目前主流的集中式和分布式方法进行了对比。结果表明,本文提出的方法能在约束丰富的动态环境中生成更平滑、更安全的轨迹,并具有更高的成功率。©️【深蓝AI】编译

1.  研究背景和相关工作

无人机集群具有高效覆盖大面积区域和协同执行多样化任务的能力。它们已被应用于搜索与救援、地图绘制、森林火灾监测、农业以及其他多种任务中。然而在实际应用中,无人机集群经常会遇到空间受限和动态环境的挑战,特别是在塌陷建筑物或工厂内进行搜救任务时。这给集群安全高效规划轨迹带来了重大挑战。

图1:无人机飞行场景©️【深蓝AI】编译

首先,可通行空间的受限增加了无人机之间发生冲突的可能性。例如,当穿过狭窄孔洞时,无人机必须依次通过以避免碰撞。此外,当在类似管道或走廊等环境结构中导航时,横向机动能力受到限制,这增加了相互碰撞的风险。

其次,无人机的飞行轨迹需要满足多种标准,包括平滑性、动力学可行性以及无人机动力学特性等。因此,轨迹规划相关的优化约束变得更加复杂,这使得问题更难求解。

最后,环境的动态性以及无人机定位的固有漂移,突出了无人机实时重规划的必要性。这种能力对于实现动态避障和提高无人机的容错能力至关重要。

现有的多智能体路径规划(MAPF)算法,主要针对障碍物较少的场景,可以分为集中式和分布式两种方法。

在集中式方法中,Sharon等人提出了基于冲突的搜索(CBS)算法,而Barer等人则在CBS基础上提出了诸如GCBS、BCBS和ECBS等次优方法,以提高搜索速度。这些算法依赖网格地图来在离散时间间隔内计算多个智能体的安全无碰撞路径。然而,基于网格的方法得到的路径未能考虑系统的动力学、运动学和平滑性约束,因此不适合在实际应用中直接执行。为解决这个问题,作者之前的工作通过在CBS算法的低层搜索中集成3D混合A*算法进行了改进。这种方法利用无人机运动学和动力学约束,促进了直接可执行的多重轨迹的生成。然而,这种方法在搜索时表现出效率低下,特别是在受约束的环境中。此外,在可扩展性和动态避障性能方面还需要改进。

对于分布式方法,相关文献提出了基于速度障碍的轻量级方法,这些方法在速度空间中寻找满足轨迹约束的可行解。然而,这种方法中的智能体使用统一的避障策略,每个智能体独立做出规划决策而没有中央协调。这一特征使得该方法容易在受限空间内的大规模群体规划任务中陷入死锁。Zhou等人提出了一种完全自主的分布式EGO-Swarm算法,采用优先级方法来解决无人机之间的冲突,并通过求解具有高可扩展性的非线性优化问题来设计轨迹。然而,由于在优化过程中使用软约束,这种方法不能保证智能体的安全。此外,在狭窄管道等环境中,仅依靠个体本地化信息进行规划可能导致无人机飞行策略频繁改变,如紧急避障和寻找可通行的交叉口。这可能产生曲率过大的飞行轨迹,从而对从事视觉相关任务的无人机产生不利影响。

此外,为实现动态避障,已有文献通过将动态障碍物的预测轨迹投影到静态障碍物地图上构建时空概率图。随后基于这些时空概率图进行轨迹规划。然而,动态障碍物的运动本质上具有不确定性。为解决这个问题,相关研究将随机避碰建模为机会约束优化问题,提出了基于有界体积扩张的避碰方法。然而,这些方法要么过于保守,要么由于概率建模中的不确定性而增加算法的复杂性。

2.  系统概述

本文做出如下假设:地图是先验信息,其中\mathcal{O}表示静态障碍物占据的空间,\mathcal{F}表示自由空间。考虑有\mathcal{N_u}个无人机和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值