受限波尔兹曼(Boltzmann)机简介

受限波尔兹曼机(RBM)是DBN的重要组成部分,是一种两层全链接模型,其中显式层和隐藏层之间无链接。RBM用于生成式训练,通过学习算法调整参数,使输入向量的分布接近训练样本集合。学习过程涉及正负梯度计算和权重、偏移更新。
摘要由CSDN通过智能技术生成

DBN(Deep Belief Network)是深度学习中的一个重要模型,受限波尔兹曼机(RBM: Restricted Boltzmann Machine)则是DBN的主要组成部件。而RBM的含义和训练比较难以理解。这里试图以直观明白的方式来解释RBM的模型及学习算法。

RBM模型

RBM是一个由神经元组成的两层模型,分别为显式层和隐藏层,层次之间全链接,层次之内无链接,“受限”的限制就是层次之间的神经元之间无链接。如图1所示。

这里写图片描述
图1 RBM模型

v h 来代表显式层和隐藏层,它们之间的链接上都有权重,可以使用一个矩阵 W 来表示。 Wij 表示从显式层神经元 vi 到隐藏层神经元 hi 之间的边上的权重。两个层次都有一个对应的偏移向量,用 a b 来表示。
当权重和偏移都给定的时候,以显式层为输入,隐藏层为输出,就可以建立一个输入与输出之间的关系。RBM是深度学习领域中的一个简单的生成式(Generative)训练模型。训练的目的是,把训练样本从输入层输入,可以在输出层获得维度不同的输出向量,而这些输出向量可以被视为从输入样本中提取的特征,反映了样本集中某些更“本质”的东西。
我们用 vi hj 代表显式层上第 i 个神经元和隐藏层上第 j 个神经元的取值。按照模型的描述,给定一个输入向量 v ,输出层神经元 j 的值为1 的概率由以下式子给出。

P(hj=1|v)=σ(bj+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值