DBN(Deep Belief Network)是深度学习中的一个重要模型,受限波尔兹曼机(RBM: Restricted Boltzmann Machine)则是DBN的主要组成部件。而RBM的含义和训练比较难以理解。这里试图以直观明白的方式来解释RBM的模型及学习算法。
RBM模型
RBM是一个由神经元组成的两层模型,分别为显式层和隐藏层,层次之间全链接,层次之内无链接,“受限”的限制就是层次之间的神经元之间无链接。如图1所示。
图1 RBM模型
用 v 和
当权重和偏移都给定的时候,以显式层为输入,隐藏层为输出,就可以建立一个输入与输出之间的关系。RBM是深度学习领域中的一个简单的生成式(Generative)训练模型。训练的目的是,把训练样本从输入层输入,可以在输出层获得维度不同的输出向量,而这些输出向量可以被视为从输入样本中提取的特征,反映了样本集中某些更“本质”的东西。
我们用 vi 和 hj 代表显式层上第 i 个神经元和隐藏层上第
P(hj=1|v)=σ(bj+

受限波尔兹曼机(RBM)是DBN的重要组成部分,是一种两层全链接模型,其中显式层和隐藏层之间无链接。RBM用于生成式训练,通过学习算法调整参数,使输入向量的分布接近训练样本集合。学习过程涉及正负梯度计算和权重、偏移更新。
最低0.47元/天 解锁文章
153

被折叠的 条评论
为什么被折叠?



