最长公共子序列与最长公共子串(DP)

1. 问题描述

子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串

  • cnblogs
  • belong

比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列。最长公共子序列(Longest Common Subsequence,LCS),顾名思义,是指在所有的子序列中最长的那一个。子串是要求更严格的一种子序列,要求在母串中连续地出现。在上述例子的中,最长公共子序列为blog(cnblogs,belong),最长公共子串为lo(cnblogs, belong)。

2. 求解算法

对于母串X=<x1,x2,⋯,xm>, Y=<y1,y2,⋯,yn>,求LCS与最长公共子串。
暴力解法
假设 m<n, 对于母串X,我们可以暴力找出2的m次方个子序列,然后依次在母串Y中匹配,算法的时间复杂度会达到指数级O(n∗2的m次)。显然,暴力求解不太适用于此类问题。
动态规划
假设Z=<z1,z2,⋯,zk>是X与Y的LCS, 我们观察到
如果Xm=Yn,则Zk=Xm=Yn,有Zk−1是Xm−1与Yn−1的LCS;
如果Xm≠Yn,则Zk是Xm与Yn−1的LCS,或者是Xm−1与Yn的LCS。
因此,求解LCS的问题则变成递归求解的两个子问题。但是,上述的递归求解的办法中,重复的子问题多,效率低下。改进的办法——用空间换时间,用数组保存中间状态,方便后面的计算。这就是动态规划(DP)的核心思想了。
DP求解LCS
用二维数组c[i][j]记录串x1x2⋯xi与y1y2⋯yj的LCS长度,则可得到状态转移方程

代码实现

public static int lcs(String str1, String str2) {
    int len1 = str1.length();
    int len2 = str2.length();
    int c[][] = new int[len1+1][len2+1];
    for (int i = 0; i <= len1; i++) {
        for( int j = 0; j <= len2; j++) {
            if(i == 0 || j == 0) {
                c[i][j] = 0;
            } else if (str1.charAt(i-1) == str2.charAt(j-1)) {
                c[i][j] = c[i-1][j-1] + 1;
            } else {
                c[i][j] = max(c[i - 1][j], c[i][j - 1]);
            }
        }
    }
    return c[len1][len2];
}

DP求解最长公共子串

前面提到了子串是一种特殊的子序列,因此同样可以用DP来解决。定义数组的存储含义对于后面推导转移方程显得尤为重要,糟糕的数组定义会导致异常繁杂的转移方程。考虑到子串的连续性,将二维数组c[i][j]用来记录具有这样特点的子串——结尾同时也为为串x1x2⋯xi与y1y2⋯yj的结尾——的长度。
得到转移方程:


最长公共子串的长度为 max(c[i,j]), i∈{1,⋯,m},j∈{1,⋯,n}。
代码实现 

public static int lcs(String str1, String str2) {
    int len1 = str1.length();
    int len2 = str2.length();
    int result = 0;     //记录最长公共子串长度
    int c[][] = new int[len1+1][len2+1];
    for (int i = 0; i <= len1; i++) {
        for( int j = 0; j <= len2; j++) {
            if(i == 0 || j == 0) {
                c[i][j] = 0;
            } else if (str1.charAt(i-1) == str2.charAt(j-1)) {
                c[i][j] = c[i-1][j-1] + 1;
                result = max(c[i][j], result);
            } else {
                c[i][j] = 0;
            }
        }
    }
    return result;
}

3. 参考资料
[1] cs2035, Longest Common Subsequence.
[2] 一线码农, 经典算法题每日演练——第四题 最长公共子序列.

[3] GeeksforGeeks, Dynamic Programming | Set 29 (Longest Common Substring).

 

本文转载自:http://www.cnblogs.com/en-heng/p/3963803.html

 

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最长公共子序列(Longest Common Subsequence, LCS)和最长公共子串(Longest Common Substring)是两个常见的字符串相关问题。 最长公共子序列是指给定两个字符串,要求找到它们之间最长的公共子序列的长度。子序列是从原字符串中删除若干个字符而得到的新字符串,字符在新字符串中的相对顺序与原字符串中的保持一致。动态规划是求解LCS问题的常用方法。 以字符串s1 = "ABCBDAB"和s2 = "BDCAB"为例,可以使用动态规划的方法求解最长公共子序列的长度。首先创建一个二维数组dpdp[i][j]表示s1的前i个字符和s2的前j个字符之间的最长公共子序列的长度,那么有以下推导关系: 1. 当i=0或j=0时,dp[i][j]=0。 2. 当s1[i-1]=s2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1。 3. 当s1[i-1]!=s2[j-1]时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。 最后,dp[len(s1)][len(s2)]即为最长公共子序列的长度。 对于最长公共子串,要求找到两个字符串中最长的公共连续子串的长度。连续子串是指在原字符串中连续出现的字符子序列。同样可以使用动态规划来解决该问题。 仍以上述两个字符串s1和s2为例,创建一个二维数组dpdp[i][j]表示以s1[i-1]和s2[j-1]为结尾的公共子串的长度,那么有以下推导关系: 1. 当i=0或j=0时,dp[i][j]=0。 2. 当s1[i-1]=s2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1。 3. 当s1[i-1]!=s2[j-1]时,dp[i][j] = 0。 最后,dp矩阵中的最大值即为最长公共子串的长度。 以上就是求解最长公共子序列最长公共子串的常见方法。在实际应用中,我们可以根据具体的问题选择合适的方法,并结合动态规划来解决这些字符串相关的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值