吴恩达深度学习个人笔记

这篇笔记探讨了深度学习在图像识别、序列数据处理中的应用,如CNN用于图像,RNN用于序列数据。此外,还介绍了二元分类问题、梯度下降法的工作原理,并强调了激活函数在引入非线性中的作用。文中还涉及了训练集的划分、偏差与方差的概念,以及如何通过正则化来应对过拟合问题。
摘要由CSDN通过智能技术生成

1.

深度学习:多隐藏层神经网络。每层的单个神经元都可计算
上一个视频提到的房地产领域,我们不就使用了一个普遍标准神经网络架构吗
      而对于图像识别处理问题,我们则要使用卷积神经网络(Convolution Neural Network),即CNN。
      对于序列数据,例如音频,有一个时间组件,随着时间的推移,音频被播放出来,
所以音频是最自然的表现。作为一维时间序列(两种英文说法one-dimensional
time series / temporal sequence).对于序列数据,经常使用RNN,一种递归神经网络
(Recurrent Neural Network),语言,英语和汉语字母表或单词都是逐个出现的,所以语言
也是最自然的序列数据,因此更复杂的RNNs 版本经常用于这些应用.而对于处理类似语音这样的序列信号时,则要使用循环神经网络(Recurrent Neural Network),即RNN。
  还有其它的例如自动驾驶这样的复杂问题则需要更加复杂的混合神经网络模型。
2.2
      对于二元分类问题来讲,给定一个输入特征向量𝑋,它可能对应一张图片,你想识别
这张图片识别看它是否是一只猫或者不是一只猫的图片,你想要一个算法能够输出预测,
你只能称之为𝑦 ^ ,也就是你对实际值 𝑦 的估计。更正式地来说,你想让 𝑦 ^ 表示 𝑦 等于1 的
一种可能性或者是机会,前提条件是给定了输入特征𝑋。换句话来说&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值