2022秋软工实践个人作业一

2022秋软工实践个人作业一

1、这个作业属于哪个课程	https://bbs.csdn.net/forums/ssynkqtd
2、这个作业要求在哪里	https://bbs.csdn.net/topics/608214003
3、这个作业的目标	学习使用Markdown排版、Github,自我评估,认识本门课程
4、学号	032002127

一、自我介绍

我来自计算机1班,学号是032002127。

二、自我评估

1、具备的能力:c、c++语言、汇编语言,了解了python的部分使用、会写一点简单的爬虫。了解基本的算法与数据结构。
2、缺乏的能力:没有开发项目的经验,英语能力不强,沟通交流能力较弱。

三、目前对软件工程、软件过程的理解

1、软件工程就是开发软件的方法、研究软件工程就是找到合适的开发软件的方法。
2、软件工程的定义:软件工程是研究和应用如何以系统性的、规范化的、可定量的过程化方法去开发和维护软件,以及如何把经过时间考验而证明正确的管理技术和当前能够得到的最好的技术方法结合起来。
3、软件过程是一个为建造软件所需完成的任务的框架,即形成软件产品的一系列步骤。

四、未来规划

准备考研,六级,学习专业知识。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
激光SLAM(Simultaneous Localization and Mapping)是指通过利用激光扫描仪的数据同时实现机器人的自我定位和环境建图的过程。这项技术已经成为机器人领域中重要的研究内容之一。 在激光SLAM理论方面,主要有几个关键的概念。首先是地图构建,机器人通过扫描周围环境,将获取到的激光点云数据转化为一幅地图。同时,激光SLAM也需要实现机器人的同时自我定位,也就是在未知环境中,机器人通过分析激光数据推算出其自身的位置。 实践方面,激光SLAM需要激光传感器进行环境测量。激光传感器会在扫描过程中发射激光束,然后通过接收反射回来的激光束,来计算击中目标物体的位置。机器人通过不断地旋转或移动激光传感器,以此来获取周围环境的激光点云数据。 激光SLAM的实施过程主要包括建图、定位和配准等步骤。建图过程中,机器人通过收集周围环境的激光数据,将其转化为一幅地图。定位过程中,机器人通过对比当前获得的激光数据和已有的地图数据,从而推算出自身的位置。配准是指将不同位置、角度下获取的激光数据进行融合,从而得到整体一致性的地图。 总的来说,激光SLAM理论与实践是通过利用激光扫描仪的数据实现机器人定位以及地图构建的过程。通过激光传感器扫描环境,将激光数据转化为地图,并实现机器人的同时自我定位。激光SLAM技术在无人驾驶、工业自动化等领域有重要的应用价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ftjfkhil

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值