机器学习方向,找实习阶段遇到的面试问题

机器学习面试,找实习阶段遇到的面试问题


  本文列举的所有问题,包括了我在面试过程中真实遇到过的关于机器学习理论方面的问题,也增加了一些我思考过、觉得可能会问到的问题。在我面试结束以前,我会继续更新下去。有时候光看书效果是不好的,多问自己一些问题,或者给自己来一场面试,往往就能加深理解和记忆。很多时候我们觉得懂了,那都是以为自己懂了,其实什么都不懂。


概述篇
你是怎么学习机器学习的?
你最近在做什么?学些什么?
你学习机器学习的时候主要是看什么书?
说一说你所了解的机器学习的整体框架?
有监督学习和无监督学习分别是什么?各有哪些?
生成模型和判别模型分别是什么?各有哪些?
说一个你最熟悉的机器学习算法或者模型?
谈谈你对现在用得比较广泛的机器学习算法的了解?

LR篇
说一下LR的原理?
LR的概率是什么形式的?
为什么LR要用sigmoid函数?用其他函数行不行?
LR的损失函数是什么?
交叉熵的意义是什么?它和KL散度有什么关系?
LR可不可以用平方误差做损失函数?与交叉熵相比有什么缺点或优点?
LR用极大似然估计求解参数和用对数损失函数求解参数的区别或联系是什么?
LR是如何求解的?
请从伯努利分布推导出LR的交叉熵函数?
LR的模型参数是什么?
LR对输入数据的分布有没有要求?比如是否要求x服从正态分布?
LR的输出服从什么分布?或者说概率p(y|x)服从什么分布?
为什么LR的输入常常是Onehot过的高维特征?
LR和SVM的区别是什么?
LR可不可以像SVM那样引入核函数?
LR为什么比线性回归更好?
LR和感知机模型的联系和区别是什么?
LR应该如何做并行?
你是否了解LR的在线学习算法?
LR要如何减少过拟合问题?
LR有什么优点和缺点?
LR的适用场景有哪些?
LR怎么做多分类问题?

SVM篇
说一下SVM的原理?
SVM的目标是什么?
什么是函数间隔,什么是几何间隔?
为什么SVM要引入拉格朗日乘子法?
什么是支持向量?
为什么SVM要引入核函数?
什么样的函数可以是核函数?
有哪些常见的核函数?
高斯核函数将数据维度提升到多少维?
有什么高效求解SVM对偶问题求解拉格朗日乘子的方法?
说一下SMO算法?
SVM和LR的区别?
SVM是否需要正则化?
SVM有什么优点和缺点?
SVM的适用场景有哪些?

决策树篇
决策树是什么?
什么是Boosting?什么是Bagging?
说一下ID3和C4.5?
说一下CART树?
你知道哪些结点分裂的准则或指标?
基尼指数有什么意义?
熵和基尼指数有什么区别?
树模型怎么防止过拟合?
GBDT怎么防止过拟合?RF怎么防止过拟合?
什么是提升树模型?什么是梯度提升树模型GBDT?
为什么GBDT要拟合负梯度,和拟合残差有什么区别?拟合负梯度有什么优势?
为什么负梯度方向是loss下降最快的方向?
提升树模型是怎么把模型输出转化为概率的?二分类问题如何?多分类问题如何?
GBDT和RF有什么区别?
GBDT和RF各有什么优缺点?
GBDT和RF各自的适用场景如何?
请你推导一下Xgboost。
说一下Xgboost和GBDT的区别?
Xgboost是怎么减少过拟合的?
Xgboost的结点分裂策略是怎样的?
Xgboost为什么那么快?
Xgboost怎么处理缺失值?
LightGBM和Xgboost的区别是什么?
LightGBM为什么那么快?
说一下LightGBM中的GOSS算法?
说一下LightGBM中的EFB算法?
说一下LightGBM中的直方图算法?
LightGBM是怎么处理Category类特征的呢?

FM篇
说一下FM和FFM的原理?
FM是用来解决什么问题的?
FM和LR有什么区别?
FFM和FM的参数谁更多?
FM的模型输出是什么?

比赛篇
说一个你觉得做的最成功的项目/比赛?
说一个你觉得做的最失败的项目/比赛?
你觉得比赛中最重要的一点是什么?
你的创新点是什么?
你们队伍的分工是怎样的?你充当着一个怎样的角色?
你们队伍尝试了那么多模型,最终是怎么决定用哪个模型的呢?
有没有了解过你们和排前面的队伍的差距在哪里?
有没有试过用深度模型?效果如何?
数据类别不平衡如何处理?
连续型特征如何变成离散型特征?
如何衡量一个模型的好坏?
如何构造线下验证集?
有哪些模型融合的方法?
stacking和blending的区别是什么?
stacking和bagging的区别是什么?

混合篇
什么是过拟合?怎么定义过拟合?
有哪些减少过拟合的方法?
L1和L2有什么区别?
为什么L1有特征选择的功能?
L1和L2分别是对模型参数引入了怎样的先验分布?
BatchNormalization的作用是什么?
AUC曲线要怎么绘制?
在绘制AUC曲线时,若有样本模型预测值相同,它们应该如何排序?
分类和聚类有什么区别?
你知道哪些最优化方法?
不可导的最优化问题有什么解决方法?
讲述一下坐标下降法,最小角回归法,近端梯度下降法?
讲述一下OWL-QN?

阅读更多

没有更多推荐了,返回首页