python的yaml模块

一、yaml文件介绍

yaml是一个专门用来写配置文件的语言。

1. yaml文件规则

  • 区分大小写;
  • 使用缩进表示层级关系;

  • 使用空格键缩进,而非Tab键缩进

  • 缩进的空格数目不固定,只需要相同层级的元素左侧对齐;

  • 文件中的字符串不需要使用引号标注,但若字符串包含有特殊字符则需用引号标注;

  • 注释标识为#

2. yaml文件数据结构

  • 对象:键值对的集合(简称 "映射或字典")
    键值对用冒号 “:” 结构表示,冒号与值之间需用空格分隔

  • 数组:一组按序排列的值(简称 "序列或列表")
    数组前加有 “-” 符号,符号与值之间需用空格分隔

  • 纯量(scalars):单个的、不可再分的值(如:字符串、bool值、整数、浮点数、时间、日期、null等)
    None值可用null可 ~ 表示

二、python中读取yaml配置文件

1. 前提条件

python中读取yaml文件前需要安装pyyaml和导入yaml模块:

  • 使用yaml需要安装的模块为pyyaml(pip3 install pyyaml);
  • 导入的模块为yaml(import yaml)

2. 读取yaml文件数据

python通过open方式读取文件数据,再通过load函数将数据转化为列表或字典;

Python
import yaml import os def get_yaml_data(yaml_file): # 打开yaml文件 print("***获取yaml文件数据***") file = open(yaml_file, 'r', encoding="utf-8") file_data = file.read() file.close() print(file_data) print("类型:", type(file_data)) # 将字符串转化为字典或列表 print("***转化yaml数据为字典或列表***") data = yaml.load(file_data) print(data) print("类型:", type(data)) return data current_path = os.path.abspath(".") yaml_path = os.path.join(current_path, "config.yaml") get_yaml_data(yaml_path) """ ***获取yaml文件数据*** # yaml键值对:即python中字典 usr: my psw: 123455 类型:<class 'str'> ***转化yaml数据为字典或列表*** {'usr': 'my', 'psw': 123455} 类型:<class 'dict'> """
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import yaml
import os
 
def get_yaml_data ( yaml_file ) :
     # 打开yaml文件
     print ( "***获取yaml文件数据***" )
     file = open ( yaml_file , 'r' , encoding = "utf-8" )
     file_data = file . read ( )
     file . close ( )
 
     print ( file_data )
     print ( "类型:" , type ( file_data ) )
 
     # 将字符串转化为字典或列表
     print ( "***转化yaml数据为字典或列表***" )
     data = yaml . load ( file_data )
     print ( data )
     print ( "类型:" , type ( data ) )
     return data
current_path = os.path . abspath ( "." )
yaml_path = os.path . join ( current_path , "config.yaml" )
get_yaml_data ( yaml_path )
 
"""
***获取yaml文件数据***
# yaml键值对:即python中字典
usr: my
psw: 123455
类型:<class 'str'>
***转化yaml数据为字典或列表***
{'usr': 'my', 'psw': 123455}
类型:<class 'dict'>
"""
 

3. yaml 文件数据为键值对

(1)yaml 文件中内容为键值对:

Python
# yaml键值对:即python中字典 usr: my psw: 123455 s: " abc\n"
1
2
3
4
5
# yaml键值对:即python中字典
usr : my
psw : 123455
s : " abc\n"
 

python解析 yaml 文件后获取的数据:

Python
{'usr': 'my', 'psw': 123455, 's': ' abc\n'}
1
2
{ 'usr' : 'my' , 'psw' : 123455 , 's' : ' abc\n' }
 

(2)yaml 文件中内容为“键值对'嵌套"键值对"

Python
# yaml键值对嵌套:即python中字典嵌套字典 usr1: name: a psw: 123 usr2: name: b psw: 456
1
2
3
4
5
6
7
8
# yaml键值对嵌套:即python中字典嵌套字典
usr1 :
   name : a
   psw : 123
usr2 :
   name : b
   psw : 456
 

python解析 yaml 文件后获取的数据:

Python
{'usr1': {'name': 'a', 'psw': 123}, 'usr2': {'name': 'b', 'psw': 456}}
1
2
{ 'usr1' : { 'name' : 'a' , 'psw' : 123 } , 'usr2' : { 'name' : 'b' , 'psw' : 456 } }
 

(3)yaml 文件中“键值对”中嵌套“数组”

Python
# yaml键值对中嵌套数组 usr3: - a - b - c usr4: - b
1
2
3
4
5
6
7
8
# yaml键值对中嵌套数组
usr3 :
   - a
   - b
   - c
usr4 :
   - b
 

python解析 yaml 文件后获取的数据:

Python
{'usr3': ['a', 'b', 'c'], 'usr4': ['b']}
1
2
{ 'usr3' : [ 'a' , 'b' , 'c' ] , 'usr4' : [ 'b' ] }
 

4. yaml 文件数据为数组

(1)yaml 文件中内容为数组

Python
# yaml数组 - a - b - 5
1
2
3
4
5
# yaml数组
- a
- b
- 5
 

python解析 yaml 文件后获取的数据:

Python
['a', 'b', 5]
1
2
[ 'a' , 'b' , 5 ]
 

(2)yaml 文件“数组”中嵌套“键值对”

Python
# yaml"数组"中嵌套"键值对" - usr1: aaa - psw1: 111 usr2: bbb psw2: 222
1
2
3
4
5
6
# yaml"数组"中嵌套"键值对"
- usr1 : aaa
- psw1 : 111
   usr2 : bbb
   psw2 : 222
 

python解析 yaml 文件后获取的数据:

Python
[{'usr1': 'aaa'}, {'psw1': 111, 'usr2': 'bbb', 'psw2': 222}]
1
2
[ { 'usr1' : 'aaa' } , { 'psw1' : 111 , 'usr2' : 'bbb' , 'psw2' : 222 } ]
 

5. yaml 文件中基本数据类型

Python
# 纯量 s_val: name # 字符串:{'s_val': 'name'} spec_s_val: "name\n" # 特殊字符串:{'spec_s_val': 'name\n' num_val: 31.14 # 数字:{'num_val': 31.14} bol_val: true # 布尔值:{'bol_val': True} nul_val: null # null值:{'nul_val': None} nul_val1: ~ # null值:{'nul_val1': None} time_val: 2018-03-01t11:33:22.55-06:00 # 时间值:{'time_val': datetime.datetime(2018, 3, 1, 17, 33, 22, 550000)} date_val: 2019-01-10 # 日期值:{'date_val': datetime.date(2019, 1, 10)}
1
2
3
4
5
6
7
8
9
10
# 纯量
s_val : name                # 字符串:{'s_val': 'name'}
spec_s_val : "name\n"      # 特殊字符串:{'spec_s_val': 'name\n'
num_val : 31.14            # 数字:{'num_val': 31.14}
bol_val : true            # 布尔值:{'bol_val': True}
nul_val : null            # null值:{'nul_val': None}
nul_val1 : ~              # null值:{'nul_val1': None}
time_val : 2018 - 03 - 01t11 : 33 : 22.55 - 06 : 00      # 时间值:{'time_val': datetime.datetime(2018, 3, 1, 17, 33, 22, 550000)}
date_val : 2019 - 01 - 10      # 日期值:{'date_val': datetime.date(2019, 1, 10)}
 

6. yaml 文件中引用

yaml 文件中内容

Python
animal3: &animal3 fish test: *animal3
1
2
3
animal3 : & animal3 fish
test : * animal3
 

python读取的数据

Python
{'animal3': 'fish', 'test': 'fish'}
1
2
{ 'animal3' : 'fish' , 'test' : 'fish' }
 

三、python中读取多个yaml文档

1. 多个文档在一个yaml文件,使用 --- 分隔方式来分段

如:yaml文件中数据

Python
# 分段yaml文件中多个文档 --- animal1: dog age: 2 --- animal2: cat age: 3
1
2
3
4
5
6
7
8
# 分段yaml文件中多个文档
-- -
animal1 : dog
age : 2
-- -
animal2 : cat
age : 3
 

2. python脚本读取一个yaml文件中多个文档方法

python获取yaml数据时需使用load_all函数来解析全部的文档,再从中读取对象中的数据

Python
# yaml文件中含有多个文档时,分别获取文档中数据 def get_yaml_load_all(yaml_file): # 打开yaml文件 file = open(yaml_file, 'r', encoding="utf-8") file_data = file.read() file.close() all_data = yaml.load_all(file_data) for data in all_data: print(data) current_path = os.path.abspath(".") yaml_path = os.path.join(current_path, "config.yaml") get_yaml_load_all(yaml_path) """结果 {'animal1': 'dog', 'age': 2} {'animal2': 'cat', 'age': 3} """
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# yaml文件中含有多个文档时,分别获取文档中数据
def get_yaml_load_all ( yaml_file ) :
     # 打开yaml文件
     file = open ( yaml_file , 'r' , encoding = "utf-8" )
     file_data = file . read ( )
     file . close ( )
     all_data = yaml . load_all ( file_data )
     for data in all_data :
         print ( data )
current_path = os.path . abspath ( "." )
yaml_path = os.path . join ( current_path , "config.yaml" )
get_yaml_load_all ( yaml_path )
"""结果
{'animal1': 'dog', 'age': 2}
{'animal2': 'cat', 'age': 3}
"""
 

四、python对象生成yaml文档

1. 直接导入yaml(即import yaml)生成的yaml文档

通过yaml.dump()方法不会将列表或字典数据进行转化yaml标准模式,只会将数据生成到yaml文档中

Python
# 将python对象生成yaml文档 import yaml def generate_yaml_doc(yaml_file): py_object = {'school': 'zhang', 'students': ['a', 'b']} file = open(yaml_file, 'w', encoding='utf-8') yaml.dump(py_object, file) file.close() current_path = os.path.abspath(".") yaml_path = os.path.join(current_path, "generate.yaml") generate_yaml_doc(yaml_path) """结果 school: zhang students: [a, b] """
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# 将python对象生成yaml文档
import yaml
def generate_yaml_doc ( yaml_file ) :
     py_object = { 'school' : 'zhang' ,
                 'students' : [ 'a' , 'b' ] }
     file = open ( yaml_file , 'w' , encoding = 'utf-8' )
     yaml . dump ( py_object , file )
     file . close ( )
current_path = os.path . abspath ( "." )
yaml_path = os.path . join ( current_path , "generate.yaml" )
generate_yaml_doc ( yaml_path )
"""结果
school: zhang
students: [a, b]
"""
 

2. 使用ruamel模块中的yaml方法生成标准的yaml文档

(1)使用ruamel模块中yaml前提条件

  • 使用yaml需要安装的模块:ruamel.yaml(pip3 install ruamel.yaml);
  • 导入的模块:from ruamel import yaml

(2)ruamel模块生成yaml文档

Python
def generate_yaml_doc_ruamel(yaml_file): from ruamel import yaml py_object = {'school': 'zhang', 'students': ['a', 'b']} file = open(yaml_file, 'w', encoding='utf-8') yaml.dump(py_object, file, Dumper=yaml.RoundTripDumper) file.close() current_path = os.path.abspath(".") yaml_path = os.path.join(current_path, "generate.yaml") generate_yaml_doc_ruamel(yaml_path) """结果 school: zhang students: - a - b """
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
def generate_yaml_doc_ruamel ( yaml_file ) :
     from ruamel import yaml
     py_object = { 'school' : 'zhang' ,
                 'students' : [ 'a' , 'b' ] }
     file = open ( yaml_file , 'w' , encoding = 'utf-8' )
     yaml . dump ( py_object , file , Dumper = yaml . RoundTripDumper )
     file . close ( )
current_path = os.path . abspath ( "." )
yaml_path = os.path . join ( current_path , "generate.yaml" )
generate_yaml_doc_ruamel ( yaml_path )
"""结果
school: zhang
students:
- a
- b
"""
 

(3)ruamel模块读取yaml文档

Python
# 通过from ruamel import yaml读取yaml文件 def get_yaml_data_ruamel(yaml_file): from ruamel import yaml file = open(yaml_file, 'r', encoding='utf-8') data = yaml.load(file.read(), Loader=yaml.Loader) file.close() print(data) current_path = os.path.abspath(".") yaml_path = os.path.join(current_path, "dict_config.yaml") get_yaml_data_ruamel(yaml_path)
1
2
3
4
5
6
7
8
9
10
11
# 通过from ruamel import yaml读取yaml文件
def get_yaml_data_ruamel ( yaml_file ) :
     from ruamel import yaml
     file = open ( yaml_file , 'r' , encoding = 'utf-8' )
     data = yaml . load ( file . read ( ) , Loader = yaml . Loader )
     file . close ( )
     print ( data )
current_path = os.path . abspath ( "." )
yaml_path = os.path . join ( current_path , "dict_config.yaml" )
get_yaml_data_ruamel ( yaml_path )
 



  • zeropython 微信公众号 5868037 QQ号 5868037@qq.com QQ邮箱
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值