POJ3422 Kaka's Matrix Travels

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/utimes/article/details/51911184

Kaka's Matrix Travels
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 9244 Accepted: 3736

Description

On an N × N chessboard with a non-negative number in each grid, Kaka starts his matrix travels with SUM = 0. For each travel, Kaka moves one rook from the left-upper grid to the right-bottom one, taking care that the rook moves only to the right or down. Kaka adds the number to SUM in each grid the rook visited, and replaces it with zero. It is not difficult to know the maximum SUM Kaka can obtain for his first travel. Now Kaka is wondering what is the maximum SUM he can obtain after his Kth travel. Note the SUM is accumulative during the K travels.

Input

The first line contains two integers N and K (1 ≤ N ≤ 50, 0 ≤ K ≤ 10) described above. The following N lines represents the matrix. You can assume the numbers in the matrix are no more than 1000.

Output

The maximum SUM Kaka can obtain after his Kth travel.

Sample Input

3 2
1 2 3
0 2 1
1 4 2

Sample Output

15

Source

POJ Monthly--2007.10.06, Huang, Jinsong


测试一下最小费用最大流的模板。很经典的建图方法。

#include <algorithm>
#include <iostream>
using namespace std;

const int MAXN = 10000;
const int MAXM = 100000;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int to,next,cap,flow,cost;
}edge[MAXM];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N;//节点总个数,节点编号从0~N-1
void init(int n)
{
    N = n;
    tol = 0;
    memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int cap,int cost)
{
    edge[tol].to = v;
    edge[tol].cap = cap;
    edge[tol].cost = cost;
    edge[tol].flow = 0;
    edge[tol].next = head[u];
    head[u] = tol++;
    edge[tol].to = u;
    edge[tol].cap = 0;
    edge[tol].cost = -cost;
    edge[tol].flow = 0;
    edge[tol].next = head[v];
    head[v] = tol++;
}
bool spfa(int s,int t)
{
    queue<int>q;
    for(int i = 0;i < N;i++)
    {
        dis[i] = INF;
        vis[i] = false;
        pre[i] = -1;
    }
    dis[s] = 0;
    vis[s] = true;
    q.push(s);
    while(!q.empty())
    {
        int u = q.front();
        q.pop();
        vis[u] = false;
        for(int i = head[u]; i != -1;i = edge[i].next)
        {
            int v = edge[i].to;
            if(edge[i].cap > edge[i].flow &&
               dis[v] > dis[u] + edge[i].cost )
            {
                dis[v] = dis[u] + edge[i].cost;
                pre[v] = i;
                if(!vis[v])
                {
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    if(pre[t] == -1)return false;
    else return true;
}
//返回的是最大流,cost存的是最小费用
int minCostMaxflow(int s,int t,int &cost)
{
    int flow = 0;
    cost = 0;
    while(spfa(s,t))
    {
        int Min = INF;
        for(int i = pre[t];i != -1;i = pre[edge[i^1].to])
        {
            if(Min > edge[i].cap - edge[i].flow)
                Min = edge[i].cap - edge[i].flow;
        }
        for(int i = pre[t];i != -1;i = pre[edge[i^1].to])
        {
            edge[i].flow += Min;
            edge[i^1].flow -= Min;
            cost += edge[i].cost * Min;
        }
        flow += Min;
    }
    return flow;
}

int a[55][55];
int main()
{
    int n,k;
    while(scanf("%d%d",&n,&k) == 2)
    {
        for(int i = 0;i < n;i++)
            for(int j = 0;j < n;j++)
                scanf("%d",&a[i][j]);
        init(2*n*n+2);
        for(int i = 0;i < n;i++)
            for(int j = 0;j < n;j++)
            {
                addedge(n*i+j+1,n*n+n*i+j+1,1,-a[i][j]);
                addedge(n*i+j+1,n*n+n*i+j+1,INF,0);
            }

        for(int i = 0;i < n;i++)
            for(int j = 0;j < n;j++)
            {
                if(i < n-1)
                    addedge(n*n+n*i+j+1,n*(i+1)+j+1,INF,0);
                if(j < n-1)
                    addedge(n*n+n*i+j+1,n*i+j+1+1,INF,0);
            }
        addedge(0,1,k,0);
        addedge(2*n*n,2*n*n+1,INF,0);
        int cost;
        minCostMaxflow(0,2*n*n+1,cost);
        printf("%d\n",-cost);
    }
    return 0;
}






展开阅读全文

Pascal's Travels

10-05

DescriptionnnAn n x n game board is populated with integers, one nonnegative integer per square. The goal is to travel along any legitimate path from the upper left corner to the lower right corner of the board. The integer in any one square dictates how large a step away from that location must be. If the step size would advance travel off the game board, then a step in that particular direction is forbidden. All steps must be either to the right or toward the bottom. Note that a 0 is a dead end which prevents any further progress. nnnConsider the 4 x 4 board shown in Figure 1, where the solid circle identifies the start position and the dashed circle identifies the target. Figure 2 shows the three paths from the start to the target, with the irrelevant numbers in each removed. n ![](http://poj.org/images/2704_1.jpg)nFigure 1n![](http://poj.org/images/2704_2.jpg)nFigure 2nInputnnThe input contains data for one to thirty boards, followed by a final line containing only the integer -1. The data for a board starts with a line containing a single positive integer n, 4 <= n <= 34, which is the number of rows in this board. This is followed by n rows of data. Each row contains n single digits, 0-9, with no spaces between them.nOutputnnThe output consists of one line for each board, containing a single integer, which is the number of paths from the upper left corner to the lower right corner. There will be fewer than 263 paths for any board. nSample Inputnn4n2331n1213n1231n3110n4n3332n1213n1232n2120n5n11101n01111n11111n11101n11101n-1nSample Outputnn3n0n7 问答

没有更多推荐了,返回首页