并查集实现

 

#include<cstdio>
#include<iostream>
#define MAX 100

using namespace std;

int par[MAX];	//父亲 
int rank[MAX];	//树的高度 

//初始化n个元素
void Init(int n){
	for(int i=0; i<n; i++){
		par[i] = i;
		rank[i] = 0;
	}
}

//查询树的根
int Find(int x){
	if(par[x] == x){
		return x;
	}
	else{
		return par[x] = Find(par[x]);
	}		
} 

//合并x和y的所属集合
void Unite(int x, int y){
	x = Find(x);
	y = Find(y);
	if(x == y) return ;
	if(rank[x] < rank[y])
		par[x] = y;
	else{
		par[y] = x;
		if(rank[x] == rank[y])
			rank[x]++;
	}
} 

//判断x和y是否在同一个并查集
bool Same (int x, int y){
	return Find(x) == Find(y);
} 

//测试函数
int main(){
	int n = 10;
	//初始化并查集 
	Init(n);
	//合并前 
	if(Same(0,1))cout << "YES" << endl;
	else cout << "NO" << endl;
	cout << Find(0) << " " << Find(1) << endl;
	//合并后 
	Unite(0,1);
	if(Same(0,1))cout << "YES" << endl;
	else cout << "NO" << endl;
	cout << Find(0) << " " << Find(1) << endl;
	return 0;
} 

使用 《挑战程序设计竞赛》中的代码,方便自己随时观看

并查集是一种数据结构,可以有效地解决团伙问题。团伙问题指的是在一个群体中,找出其中的团伙关系。举个例子,假设有一群人,其中有些人是朋友,有些人是陌生人,现在需要找出所有的朋友团伙。这个问题可以用并查集来解决。 具体实现过程如下: 1. 初始化并查集,将每个人看作一个单独的团伙,即每个人的父节点都是自己。 2. 遍历所有的朋友关系,将每个朋友关系所在的两个人合并到同一个团伙中。合并的过程中,需要找到两个人所在团伙的根节点,将其中一个根节点的父节点指向另一个根节点。 3. 遍历所有的人,统计每个团伙的人数。具体方法是遍历每个人,找到该人所在团伙的根节点,然后统计该根节点下所有子节点的个数。 4. 输出所有团伙的人数。 下面是并查集实现团伙问题的示例代码(假设已经读入了朋友关系列表friend_list): ```python # 初始化并查集 parent = {} for i in range(len(friend_list)): parent[i] = i # 合并朋友关系所在的团伙 for f1, f2 in friend_list: root1 = find_root(parent, f1) root2 = find_root(parent, f2) if root1 != root2: parent[root1] = root2 # 统计每个团伙的人数 group_sizes = {} for i in range(len(friend_list)): root = find_root(parent, i) if root not in group_sizes: group_sizes[root] = 1 else: group_sizes[root] += 1 # 输出每个团伙的人数 for root, size in group_sizes.items(): print("团伙{}有{}个人".format(root, size)) # 找到节点的根节点 def find_root(parent, node): while parent[node] != node: node = parent[node] return node ``` 这个代码实现了一个简单的并查集,并可以用来解决团伙问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值