一、高频细节信息丢失
表现:
-
图像处理中丢失边缘锐度、纹理细节(如毛发、织物褶皱)
-
信号处理中缺失瞬态事件(如脉冲噪声、高频振荡)
-
金融数据中消失的短期价格波动模式
技术原理:
-
小波变换视角:高频分量(细节系数)被低频分量(近似系数)替代
-
傅里叶分析:高于奈奎斯特频率的分量被折叠到低频区域(混叠失真)
-
采样定理限制:采样率不足导致高频信息无法被有效捕获
案例:
-
医学影像降采样导致微钙化点丢失(乳腺癌筛查误诊率上升12%)
-
雷达信号降采样使目标微动特征模糊(速度测量误差>15%)
二、快速变化信号失真
表现:
-
时间序列中短时突变(如金融闪崩、设备故障尖峰)被平滑
-
生物电信号(EEG/ECG)中的微小异常波形被抹除
技术原理:
-
移动平均降采样:时间窗口内的极值被平均化
-
最近邻插值:突变点可能被相邻点覆盖
-
重采样频率不足:无法满足信号带宽需求(如超声波成像)

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



