机器学习实战-8预测数值型数据-回归

回归和分类是机器学习两个主要的类别,通常会在面试的时候,被询问这两者之间的区别。对于我,有时候我也无法说清,虽然我感觉我已经弄懂了,但是这里还是说一说自己的理解。首先,我们学过一本书《随机过程》,这里面讲到了马尔科夫链等,这是一种在时间、位置等有序列属性的数据,也就是说,这些说句不仅仅存在关系,而...

2017-11-25 15:07:58

阅读数:1497

评论数:0

机器学习实战-10k-means聚类

一句话总结,即将数据集分为k个类别。原理:1、首先选取k个初始点作为中心;然后遍历所有的点,对于每一个点,计算k个中心中到这个点距离最小的中心,然后将这个点划分到这个中心;3、当所有的点划分完毕,重新计算类别的计算中心(将均值作为中心),直到中心点不再变化。但是这种方式可能陷入局部最小解,为...

2017-11-22 18:39:48

阅读数:175

评论数:0

机器学习实战-14利用SVD简化数据-改进推荐系统

虽然本章标题是SVD,但是感觉本章的内容核心却有点像是推荐系统,SVD的主要作用优化数据,简化运算。对于推荐系统,生活中处处都是,比如火热的网易云音乐,其中就是用到的因子推荐算法,记得我的第一篇博客就是从知乎上转载下来的;另外还有今日头条;其他的应用其实也有,但是自我感觉,这两个应用应该是最好的。...

2017-11-18 11:19:19

阅读数:235

评论数:0

机器学习实战-13利用PCA来简化数据

最近正在做一个语音分离的任务,其中有一个语音分离的方法叫做NMF,中文非负矩阵分解,即将矩阵表示为V=WH,m*n = m*r * r*n;其实这种矩阵分解的方式和本章的内容类似,也是对矩阵进行降维或者简化矩阵;其实有时候并不仅仅是降维,这种方式,也是一种变相提取特征值得过程,其中的W相当于特征向...

2017-11-17 10:22:49

阅读数:157

评论数:0

机器学习实战-6支持向量机

在机器学习几大算法中,支持向量应该算是应用最广泛的,但是却也是理解最困难的。相对于其他的算法而言,这个算法的逻辑可能并不难难,难的是它的内部逻辑转换,如何转化求解最大超平面。其实最近我在想,机器学习有时候感觉理解起来并不太难,有时候相对于其他知识来说,比如电磁场,固体物理等,简直是最简单的,甚至感...

2017-11-16 20:49:43

阅读数:201

评论数:0

机器学习实战-7AdaBoost提升算法

这一章的主要思想就是“三个臭皮匠赛一个诸葛亮”。一般而言,我们都是通过一个分类器进行分类,但是一个分类器可能会出现偶然误差错误,就像一个人总会出现失误一样。所以,我们学习多个不同的分类器,然后将这些分类器通过加上不同的权重组合起来,就形成了一种强大的集成分类器。而这其中,可以再次改进,对不同的分类...

2017-11-05 23:02:57

阅读数:221

评论数:0

机器学习实战-4朴素贝叶斯-python3

==这一章原理很简单,相关的知识到处都是,《数学之美》讲过,《统计学习方法》西瓜书都有详细的概述。但是就是一个简单的概率问题,如果真正遇到实际问题,却也并不是很好解决的。这其中往往是实际操作时往往和理论空想不同,数据的合理安排非常重要。贝叶斯的使用非常广泛,其实就目前而言,现实生活中很多的人工智能...

2017-11-03 14:33:04

阅读数:211

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭