逻辑回归

假设函数表示

y ∈ {0, 1},因变量y只有0,1两种取值,
为此改变假设函数的形式,使假设函数 hθ(x) h θ ( x ) 满足 0hθ(x)1 0 ≤ h θ ( x ) ≤ 1

hθ(x)=g(θTx)z=θTxg(z)=11+ez h θ ( x ) = g ( θ T x ) z = θ T x g ( z ) = 1 1 + e − z

得到假设函数:

hθ(x)=11+eθTx h θ ( x ) = 1 1 + e − θ T x

称为逻辑函数(Logistic Function)或者S型函数(Sigmoid Function)
逻辑函数
对于样本x, hθ(x) h θ ( x ) 给出输出值为1的概率,即 P(y=1|x;θ) P ( y = 1 | x ; θ )

决策边界

为了得到离散的0和1的两个分类,我们将假设函数做以下转化

hθ(x)0.5y=1hθ(x)<0.5y=0 h θ ( x ) ≥ 0.5 → y = 1 h θ ( x ) < 0.5 → y = 0

即当假设函数值大于等于0.5时,预测y=1;小于0.5时,预测y=0.

hθ(x)=g(θTx)0.5whenθTx0 h θ ( x ) = g ( θ T x ) ≥ 0.5 w h e n θ T x ≥ 0
,所以
θTx0y=1θTx<0y=0 θ T x ≥ 0 ⇒ y = 1 θ T x < 0 ⇒ y = 0

决策边界就是区分预测y=1的区域和y=0的区域的曲线,它是假设函数的属性,与数据集无关。
曲线 θTx=0 θ T x = 0 即决策边界。

代价函数

逻辑回归的代价函数:

J(θ)=1mi=1mCost(hθ(x(i)),y(i))Cost(hθ(x),y)=log(hθ(x))Cost(hθ(x),y)=log(1hθ(x))if y = 1if y = 0 J ( θ ) = 1 m ∑ i = 1 m C o s t ( h θ ( x ( i ) ) , y ( i ) ) C o s t ( h θ ( x ) , y ) = − log ⁡ ( h θ ( x ) ) if y = 1 C o s t ( h θ ( x ) , y ) = − log ⁡ ( 1 − h θ ( x ) ) if y = 0

y=1, 这里写图片描述,y=0,这里写图片描述

Cost(hθ(x),y)=0 if hθ(x)=yCost(hθ(x),y) if y=0andhθ(x)1Cost(hθ(x),y) if y=1andhθ(x)0 C o s t ( h θ ( x ) , y ) = 0  if  h θ ( x ) = y C o s t ( h θ ( x ) , y ) → ∞  if  y = 0 a n d h θ ( x ) → 1 C o s t ( h θ ( x ) , y ) → ∞  if  y = 1 a n d h θ ( x ) → 0

Cost(hθ(x),y)=ylog(hθ(x))(1y)log(1hθ(x)) C o s t ( h θ ( x ) , y ) = − y log ⁡ ( h θ ( x ) ) − ( 1 − y ) log ⁡ ( 1 − h θ ( x ) )

完整的代价函数
J(θ)=1mi=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))] J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ]

向量表示
h=g(Xθ)J(θ)=1m(yTlog(h)(1y)Tlog(1h)) h = g ( X θ ) J ( θ ) = 1 m ⋅ ( − y T log ⁡ ( h ) − ( 1 − y ) T log ⁡ ( 1 − h ) )

梯度下降

Repeat{θj:=θjαθjJ(θ)} R e p e a t { θ j := θ j − α ∂ ∂ θ j J ( θ ) }

Repeat{θj:=θjαmi=1m(hθ(x(i))y(i))x(i)j} R e p e a t { θ j := θ j − α m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) }

向量运算实现: θ:=θαmXT(g(Xθ)y⃗ ) θ := θ − α m X T ( g ( X θ ) − y → )
梯度运算的推导:

θjJ(θ)=1mi=1m(y(i)1hθ(x(i))hθ(x(i))θj(1y(i))11hθ(x(i))hθ(x(i))θj)=1mi=1m(y(i)1g(θTx(i))(1y(i))11g(θTx(i)))g(θTx(i))θj=1mi=1m(y(i)1g(θTx(i))(1y(i))11g(θTx(i)))g(θTx(i))(1g(θTx(i)))x(i)j=1mi=1m(y(i)(1g(θTx(i)))(1y(i))g(θTx(i)))x(i)j=1mi=1m(y(i)g(θTx(i)))x(i)j=1mi=1m(hθ(x(i))y(i))x(i)j ∂ ∂ θ j J ( θ ) = − 1 m ∑ i = 1 m ( y ( i ) 1 h θ ( x ( i ) ) ∂ h θ ( x ( i ) ) ∂ θ j − ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ∂ h θ ( x ( i ) ) ∂ θ j ) = − 1 m ∑ i = 1 m ( y ( i ) 1 g ( θ T x ( i ) ) − ( 1 − y ( i ) ) 1 1 − g ( θ T x ( i ) ) ) ∂ g ( θ T x ( i ) ) ∂ θ j = − 1 m ∑ i = 1 m ( y ( i ) 1 g ( θ T x ( i ) ) − ( 1 − y ( i ) ) 1 1 − g ( θ T x ( i ) ) ) g ( θ T x ( i ) ) ( 1 − g ( θ T x ( i ) ) ) x j ( i ) = − 1 m ∑ i = 1 m ( y ( i ) ( 1 − g ( θ T x ( i ) ) ) − ( 1 − y ( i ) ) g ( θ T x ( i ) ) ) x j ( i ) = − 1 m ∑ i = 1 m ( y ( i ) − g ( θ T x ( i ) ) ) x j ( i ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i )

2到3步:
g(θTx(i))θj=ddz(11+ez)(θTx(i))θjz=θTx(i)=ez(1+ez)2(θ0+θ1x1++θjxj++θmxm)θj=ez+11(1+ez)2x(i)j=[11+ez(11+ez)2]x(i)j=(g(z)g2(z))x(i)j=g(θTx(i))(1g(θTx(i)))x(i)j ∂ g ( θ T x ( i ) ) ∂ θ j = d d z ( 1 1 + e − z ) ∂ ( θ T x ( i ) ) ∂ θ j ⋯ 令 z = θ T x ( i ) = e − z ( 1 + e − z ) 2 ∂ ( θ 0 + θ 1 x 1 + ⋯ + θ j x j + ⋯ + θ m x m ) ∂ θ j = e − z + 1 − 1 ( 1 + e − z ) 2 x j ( i ) = [ 1 1 + e − z − ( 1 1 + e − z ) 2 ] x j ( i ) = ( g ( z ) − g 2 ( z ) ) x j ( i ) = g ( θ T x ( i ) ) ( 1 − g ( θ T x ( i ) ) ) x j ( i )

多类别分类

这里写图片描述

选择一个类别,将其余的类别都划为第二类,由此得到一个分类器,以此类推,对n个类别获得n个分类器

y{0,1...n}h(0)θ(x)=P(y=0|x;θ)h(1)θ(x)=P(y=1|x;θ)h(n)θ(x)=P(y=n|x;θ)prediction=maxi(h(i)θ(x)) y ∈ { 0 , 1 . . . n } h θ ( 0 ) ( x ) = P ( y = 0 | x ; θ ) h θ ( 1 ) ( x ) = P ( y = 1 | x ; θ ) ⋯ h θ ( n ) ( x ) = P ( y = n | x ; θ ) p r e d i c t i o n = max i ( h θ ( i ) ( x ) )
预测值取各个分类器结果中最大值,即为预测结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值