计算机毕业设计hadoop+spark+hive租房推荐系统 58同城租房视化 大数据毕业设计(源码+文档+PPT+ 讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

Hadoop+Spark+Hive租房推荐系统技术说明

一、引言

随着城市化进程的加速和人口流动的增加,租房市场日益繁荣。然而,租房市场存在信息过载、房源信息不透明等问题,租客在海量房源中寻找合适住所时,往往耗费大量时间和精力。为了解决这些问题,构建一个基于Hadoop+Spark+Hive技术的租房推荐系统具有重要意义。该系统能够通过对海量租房数据的分析和处理,为用户提供精准、个性化的租房推荐服务,提高租房效率和用户体验。

二、系统架构设计

(一)整体架构

本系统采用分层架构设计,主要包括数据采集层、数据存储层、数据处理层、推荐算法层和应用服务层。

  • 数据采集层:通过网络爬虫技术从各大租房网站采集租房数据,包括房源信息(如房屋标题、租金、地理位置、户型、面积等)、用户行为数据(如浏览记录、收藏记录等)以及用户评价、周边设施等信息。
  • 数据存储层:利用Hadoop的分布式文件系统(HDFS)存储采集到的租房数据,同时使用Hive构建数据仓库,对数据进行分类、存储和管理,以便后续的数据分析和查询。
  • 数据处理层:采用Spark对存储在HDFS上的租房数据进行清洗、转换和特征提取等预处理操作,为推荐算法提供高质量的数据输入。
  • 推荐算法层:基于协同过滤、内容推荐等算法,利用Spark的MLlib库实现租房推荐模型。
  • 应用服务层:提供租房推荐服务,为租客提供个性化的租房推荐列表。

(二)数据流向

数据从数据采集层进入系统后,首先存储到HDFS中,然后通过Hive进行管理和查询优化。数据处理层利用Spark对Hive表中的数据进行预处理,将处理后的数据输入到推荐算法层进行模型训练和推荐。最后,应用服务层将推荐结果展示给用户。

三、技术选型与实现

(一)Hadoop

Hadoop是一个分布式计算框架,主要由HDFS和MapReduce组成。HDFS具有高容错性和高吞吐量的特点,能够存储海量的租房数据;MapReduce则提供了一种编程模型,用于对存储在HDFS上的数据进行并行处理。在本系统中,HDFS用于存储采集到的租房数据,确保数据的完整性和安全性。

(二)Spark

Spark是一个快速通用的集群计算系统,具有高效的内存计算能力。它提供了丰富的API,支持多种编程语言,如Scala、Java和Python。Spark的MLlib库包含了多种机器学习算法,可用于实现租房推荐算法。在本系统中,Spark用于对租房数据进行清洗、转换和特征提取等预处理操作,以及实现推荐算法,提高推荐效率。

(三)Hive

Hive是基于Hadoop的一个数据仓库工具,它提供了类似SQL的查询语言(HiveQL),方便用户对存储在HDFS上的数据进行查询和分析。Hive可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能。在本系统中,Hive用于对租房数据进行管理和查询优化,方便后续的数据分析。

(四)数据采集

通过网络爬虫技术,如使用Python的Scrapy框架,从58同城、安居客等租房平台抓取房源信息。爬虫程序需要设置合理的请求频率和策略,避免对目标网站造成过大压力。同时,要对采集到的数据进行初步清洗,去除重复、无效和错误数据。

(五)数据存储与管理

将清洗后的数据上传到HDFS,在Hive中创建相应的数据表结构。设计合理的Hive数据表分区和分桶策略,优化数据存储和查询性能。例如,可以按照地理位置、租金范围等对数据进行分区,提高查询效率。

(六)数据处理

利用Spark对Hive表中的租房数据进行预处理。数据清洗包括去除重复数据、处理缺失值等;数据转换将文本数据转换为数值特征,如将房源描述中的关键词进行向量化处理;特征提取提取用户和房源的特征向量,如用户的偏好特征、房源的地理位置特征等。

(七)推荐算法实现

  1. 协同过滤算法:基于用户或物品的相似性进行推荐。计算用户相似度可以使用余弦相似度、皮尔逊相关系数等方法;寻找最近邻用户后,根据最近邻用户的行为数据,为当前用户推荐他们喜欢但当前用户尚未浏览过的房源。
  2. 内容推荐算法:基于房源的特征信息进行推荐。首先对房源的特征进行提取,如地理位置、租金、户型、面积等,然后计算房源之间的相似度。当租客访问系统时,根据租客的历史浏览记录,为其推荐与浏览过的房源相似的房源。
  3. 混合推荐算法:为了提高推荐的准确性和多样性,本系统采用混合推荐算法,将协同过滤算法和内容推荐算法进行融合。例如,可以给协同过滤算法和内容推荐算法的推荐结果设置不同的权重,综合计算得到最终的推荐列表。

(八)应用服务开发

使用Flask或Spring Boot等框架开发推荐系统的后端服务,提供API接口供前端调用。前端使用Vue.js或React等框架开发用户界面,实现用户登录、房源查询、推荐结果展示等功能。

四、系统测试与优化

(一)测试内容

对推荐系统进行全面测试,包括功能测试、性能测试和用户体验测试等。功能测试确保系统的各项功能正常、稳定运行;性能测试通过模拟高并发场景测试,评估系统在高并发情况下的性能表现,如响应时间、吞吐量等;用户体验测试收集用户反馈,对系统进行优化和改进。

(二)优化措施

根据测试结果,对系统进行优化。例如,调整算法参数、优化数据库查询效率、采用分布式计算和缓存技术提高系统性能等。同时,根据用户反馈,持续优化推荐模型,提高用户的满意度。

五、创新点与优势

(一)创新点

  1. 多平台数据整合:从多个租房平台采集数据,整合到统一的数据存储平台中,为用户提供更全面的房源信息。
  2. 混合推荐算法:将协同过滤算法和内容推荐算法进行融合,提高了推荐的准确性和多样性。
  3. 实时数据处理与推荐:虽然本系统主要基于离线数据处理,但可以通过引入流处理技术(如Flink),实现对租房数据的实时处理和推荐,满足租客的实时需求。

(二)优势

  1. 提高租房效率:通过精准的推荐,减少租客在海量房源中筛选的时间,提高租房效率。
  2. 提升用户体验:为用户提供个性化的租房推荐,满足用户的个性化需求,提升用户体验。
  3. 促进租房市场健康发展:对于房东和租房平台来说,有助于提高房源的出租率,促进租房市场的健康发展。

六、结论

本文设计并实现了一个基于Hadoop+Spark+Hive的租房推荐系统。通过对租房数据的采集、存储、处理和分析,采用协同过滤、内容推荐和混合推荐算法为用户提供个性化的租房推荐。实验结果表明,该系统能够有效地提高租房匹配的效率和准确性,为租客提供更好的租房体验。未来,可以进一步引入更多的数据源,如社交网络数据、地理位置数据等,丰富用户和房源的特征信息,提高推荐的准确性;优化推荐算法,采用深度学习等先进技术,进一步提高推荐的性能;加强系统的实时性,实现对租房数据的实时处理和推荐。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值