坑爹的搜索题。。搜索什么的最讨厌了。还有英语真的很伤!!
题目大意就不说了。。由于搜索方面的薄弱,so借鉴了这个博客的思考。
我采用的是dfs的搜索方法。从上面那个博客里学到的优化。还有使用std函数sort排序。哈哈哈好方便的说。
不知道为什么,我总是想不到搜索的剪枝,例如这道题里面的对邮票的面值进行排序。。超过5张面值一样的邮票,直接算5张,我觉得我真的很难想的到。。我直接看别人的剪枝方法,是因为我实在对自己的搜索没有信心。。。搜索TLE太多次。。好伤!
蒜了,直接贴代码:
#include <cstdio>
#include <algorithm>
using namespace std;
bool flag, flag_tie;
int value[26], solve[6], bestsolve[6];
void dfs(int need, int stampsnum, int type, int head, int tail);
int main(int argc, char const *argv[])
{
while(1) {
int x, num = 0, type[26] = {0};
while(scanf("%d", &x) != EOF && x != 0){
if(type[x] < 5) {
value[num++] = x;
type[x]++;
}
}
if (num == 0) { break; }
sort(value, value+num);
while(scanf("%d", &x) != EOF && x != 0){
flag_tie = flag = false;
for(int i = 0; i < 6; ++i) { bestsolve[i]=0; }
dfs(x, 0, 0, 0, num);
printf("%d", x);
if (bestsolve[0] == 0) { printf(" ---- none\n"); }
else {
printf(" (%d):", bestsolve[0]);
if(flag_tie) { printf(" tie\n"); }
else {
for (int i = 2; i < 2+bestsolve[1]; ++i){
printf(" %d", bestsolve[i]);
}
printf("\n");
}
}
}
}
return 0;
}
inline int max(int* arr, int l, int r)
{
int x = arr[l];
for(int i = l; i < r; ++i){
if(arr[i] > x) x = arr[i];
}
return x;
}
inline void update(int typesnum, int stampsnum)
{
bestsolve[0] = typesnum;
bestsolve[1] = stampsnum;
for(int i = 2; i < 6; ++i){
bestsolve[i] = solve[i-2];
}
}
void dfs(int need, int stampsnum, int typesnum, int head, int tail)
{
static int times[26] = {0};
if(stampsnum < 5){
if(need == 0) {
if(flag == false) {
flag = true;
update(typesnum, stampsnum);
} else {
if(typesnum==bestsolve[0]){
if(stampsnum==bestsolve[1]) {
int maxcs = max(solve, 0, 4);
int maxbs = max(bestsolve, 2, 6);
if(maxcs == maxbs) { flag_tie = true; }
else if(maxcs > maxbs) {
flag_tie = false;
update(typesnum, stampsnum);
}
} else if(stampsnum<bestsolve[1]) {
flag_tie = false;
update(typesnum, stampsnum);
}
} else if(typesnum>bestsolve[0]){
flag_tie = false;
update(typesnum,stampsnum);
}
}
} else {
for(int i = head; i < tail; ++i){
if(need >= value[i]){
solve[stampsnum] = value[i];
times[i]++ == 0 && typesnum++;
dfs(need-value[i],stampsnum+1,typesnum,i,tail);
solve[stampsnum] = 0;
times[i]-- == 1 && typesnum--;
} else { break; }
}
}
}
}
525

被折叠的 条评论
为什么被折叠?



