FAST-LIO 雅可比推导方法一

论文地址 arxiv.org/pdf/2010.08196.pdf

1.基本公式

在两个李代数中有一个为小量时,可以用BCH近似表达:

2.状态的定义

误差状态的定义如下:

由于是ESKF(误差状态卡尔曼滤波器),因此我们要估计的是误差状态

在FAST-LIO中对于误差状态转移方程的描述以及线性化结果如下:

误差的估计值=状态的真值-状态的估计值。然后由状态转移方程从i+1时刻递推到i时刻。

KF用的是一阶泰勒展开,那么这里的F_x就是一阶导,又因为误差和噪声的期望都为0,所以这使得我们可以在0处展开,因此只需要求解在0处的导数即可:

分子部分,令

链式求导展开:

导数是单位阵。分子上的东西全消掉了,只剩误差项,所以是单位阵。

构建一个更通用的形式来求解:

对两个小量进行展开近似,因为小量趋近于0,所以使用泰勒公式0处展开:

这里比较难计算的是第三行第一项:

原文是 https://zhuanlan.zhihu.com/p/670130932

写的很清晰,记录下来,值的学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值