vins-mono视觉惯导对齐 如图,重力矢量大小固定,半球半径即为模长,取切平面上相互垂直的b1、b2方向,便可与重力方向组成三维正交基,实现在三维空间中将重力参数化。因在上面优化过程中,g也是变量,数值会变化,所以需要修正。c0代表视觉坐标系第0帧,bk代表body坐标系第k帧。2)速度、重力向量、尺度因子初始化。下面就简单了,与第二步相同,用矩阵分解计算。为了能够方便的利用LDLT方法对上式求解,
MPU6050姿态解算经典文章 旋转顺序:Z,Y,X(从大地坐标系到IMU坐标系)% 定义一些符号 r=row p=pitch y=yawsyms r p y% 3个旋转矩阵(坐标系旋转,注意负号的位置!
FAST-LIO 雅可比推导方法一 误差状态的定义如下:由于是ESKF(误差状态卡尔曼滤波器),因此我们要估计的是误差状态。在FAST-LIO中对于误差状态转移方程的描述以及线性化结果如下:误差的估计值=状态的真值-状态的估计值。然后由状态转移方程从i+1时刻递推到i时刻。KF用的是一阶泰勒展开,那么这里的F_x就是一阶导,又因为误差和噪声的期望都为0,所以这使得我们可以在0处展开,因此只需要求解在0处的导数即可:分子部分,令链式求导展开:导数是单位阵。分子上的东西全消掉了,只剩误差项,所以是单位阵。
win10 opencv4.9.0 + contrib 编译安装 ffmpeg ippicv boostdesc vgg_generated 下载失败及 setlocal 错误解决(附文件下载) 3.下载对应文件 opencv_videoio_ffmpeg.dll、opencv_videoio_ffmpeg_64.dll、ffmpeg_version.cmake。1.找到指导下载的 .cmake 文件 opencv4.9.0\3rdparty\ffmpeg\ffmpeg.cmake。4.将下载文件放入 opencv-4.9.0\build\3rdparty\ffmpeg\,供编译时使用。下载后放入 opencv-4.9.0\build\downloads\wechat_qrcode\。
loam 算法个人总结 loam 是2014年lidar实现的 slam,经典的入门算法,kitti数据集排名始终靠前,代码开源过后来关闭了,但有人模拟出 A-loam、lego-loam论文地址: www.ri.cmu.edu/pub_files/2014/7/Ji_LidarMapping_RSS2014_v8.pdf代码:www.github.com/HKUST-Aerial-Robotics/A-LOAM。
一些动态slam和激光雷达slam 1.动态slam1.1实时动态 slam GitHub - yubaoliu/RDS-SLAM: DS-SLAM: Real-Time Dynamic SLAM Using Semantic Segmentation Methods但不含语义信息1.2 实时动态 yolov5+slam 动态场景下的语义SLAM的简单实现(基于YOLOv5目标检测)_yolo +slam-CSDN博客2.视觉+雷达+imu2.1 R2live:A Robust, Real-time, LiDA
make时报错“/lib/libgdal.so.26: undefined reference to `TIFFReadRGBAStripExt@LIBTIFF_4.0‘” 修改anaconda libgdal.so.26库文件依赖的 libtiff.so 指向,虽然可能能解决,但修改了anaconda内部的库,后续可能引起其他错误。详细查看错误是,ros用的opencv和工程用的冲突,修改工程用的和ros为同一个opencv即可。ubuntu20.04 ros是 noetic 依赖opencv4.2.0。直接屏蔽了anaconda,还是报错,说明不是anaconda问题。错误在编译vins-mono时遇到的。
RuntimeError: CUDA error: CUBLAS_STATUS_NOT_SUPPORTED when calling `cublasSgemmStridedBatched` 报错解决 参考了博文:https://blog.csdn.net/weixin_44162363/article/details/135079411。配置项目环境: https://github.com/JH-LEE-KR/l2p-pytorch。而且此时运行程序执行命令后,不再报错。这里其实有点问题,看下面解决方法。
sigslot/signal.hpp:254:32: error: ‘enable_if_t’ is not a member of ‘std’ 下面的没有的都写上,尤其最后两句,或者重装sigslot用C++11编译,但前者可以后者就没试。原因可能是sigslot用的C++14编译的,当前的工程又用C++11编译了。
wait for imu data max_time_min (max_time_minute单位是分钟!)小于rosbag topic时间(单位是秒)util_imu 标定时出现,除了launch和rosbag播放的topic名字一致,还要修改launch时间。
ubuntu20.04 ffmpeg 源码安装过程总结 1)官⽹下载fdk-aac源码:https://jaist.dl.sourceforge.net/project/opencore-amr/fdk-aac/1)https://www.speex.org/downloads/ 下载Speex Source Code。1)官⽹下载mp3lame源码:https://sourceforge.net/projects/lame/2)解压配置./configure --prefix=/usr/local/speex-1.2.0。
ubuntu var 清理 清理前,查看 /var/lib/snapd/snaps$ snap list --all。清理禁用的 sudo rm -f gnome-3-38-2004_119.snap 等等。
nvcc fatal : Unsupported gpu architecture ‘compute_ 编译 tiny-cuda-nn 遇到的问题。更改cmake版本3.18.0。gcc11降到gcc7问题解决。报错 GNU version。
辐射神经场算法——NeRF算法详解 辐射神经场算法——NeRF算法详解NeRF(Neural Radiance Fields)是2020年ECCV会议上的Best Paper,一石激起千层浪,在此之后的两三年的各大顶会上相关文章层出不穷,其影响力可见一斑,NeRF通过隐式表达的方式将新视角合成任务(Novel View Synthesis Task)推向了一个新的高度。那么,什么是“新视角合成任务”呢?什么是“隐式表达”呢?“新视角合成任务"指的是对于某一场景给定某些视角下的观测(图片),通过算法合成新视角下的观测(图片)的任务,如下
论文随记|BARF : Bundle-Adjusting Neural Radiance Fields NeRF需要准确相机标定,本文想在不完美相机标定或完全未知标定情况下重建,学习三维表示并配准相机帧,bundle-adjustment是sfm中的一种方法。nerf等重建方法对相机位姿要求严苛,最简单的想法是通过back-propagation对相机位姿也同时优化,但是在实践中发现这对初始化很敏感,而且容易收敛到次优解,降低重建质量。显然的是如果每像素的预测之间有关系(即信号是光滑的),那么。,这对预测来说是很不好的,适合重建中学习高频信号但是不适合配准中的学习,图像配准更希望平滑的信号。