使用 Fiddler 监控和改进企业级机器学习部署
机器学习模型的部署和运维是企业实现 AI 应用的关键环节。然而,维护一个稳定、高效、透明的机器学习系统需要强大的工具链支持。Fiddler 是一个专注于生成式和预测性 AI 系统运维的平台,为企业提供了一站式解决方案,用于 监控 (Monitoring)、解释 (Explainability)、分析 (Analytics) 和 改进 (Improvement) 机器学习模型。
在本文中,我们将学习如何使用 Fiddler 结合 LangChain 和 OpenAI API,构建一个能够自动处理和监控生成式任务的工作流。
技术背景介绍
Fiddler 的核心价值在于:
- 提供详细的模型运维和性能分析
- 可视化的透明解释性功能,理解模型行为
- 支持对模型的实时监控和日志记录
- 支持多团队协作,例如数据科学、MLOps 和合规团队
在此背景下,我们将结合 LangChain 的能力,通过实例向大家展示如何使用 FiddlerCallbackHandler 为生成式任务添加自动监控和分析。
核心原理解析
在 LangChain 框架中,我们可以通过 FiddlerCallbackHandler 将生成式任务的调用过程记录到 Fiddler 平台上。每次调用都会实时记录以下信息:
- 输入和输出数据(例如:问题和回答)
- 模型调用的性能和延迟
- 错误日志和异常分析
- 各种指标的生成(如准确率或延迟分布)
这些记录可以在 Fiddler 平台上进行可视化和深入诊断,帮助快速定位模型问题和优化性能。
代码实现演示
以下是具体的代码实现步骤:
1. 安装所需依赖
在开始之前,确保安装以下必要库:
# 安装 LangChain 和 Fiddler SDK
pip install langchain langchain-community langchain-openai fiddler-client
2. 配置 Fiddler 凭据
获取 Fiddler 的连接信息,包括:
- 实例 URL(
URL
) - 组织名称(
ORG_NAME
) - 授权令牌(
AUTH_TOKEN
)
这些可以在 Fiddler 的设置页面中找到。
然后,在代码中设置以下变量:
# 配置 Fiddler 实例
URL = "https://demo.fiddler.ai" # 替换为你的 Fiddler 实例 URL
ORG_NAME = "your-org-name" # 替换为你的组织名称
AUTH_TOKEN = "your-auth-token" # 替换为你的授权令牌
# 配置项目和模型名称
PROJECT_NAME = "demo-project" # 替换为 Fiddler 中的项目名称
MODEL_NAME = "demo-model" # 替换为模型名称
3. 创建 Fiddler 回调处理器
通过 FiddlerCallbackHandler,实现对模型调用的实时监控和记录。
from langchain_community.callbacks.fiddler_callback import FiddlerCallbackHandler
# 初始化 Fiddler 回调处理器
fiddler_handler = FiddlerCallbackHandler(
url=URL,
org=ORG_NAME,
project=PROJECT_NAME,
model=MODEL_NAME,
api_key=AUTH_TOKEN,
)
4. 简单链式调用示例
在以下例子中,我们通过 LangChain 配置一个基本的生成式任务链,并将其调用记录传递给 Fiddler。
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import OpenAI
# 配置 OpenAI 模型
# 确保你的 OPENAI_API_KEY 环境变量已经设置
llm = OpenAI(temperature=0, streaming=True, callbacks=[fiddler_handler])
# 定义输出解析器
output_parser = StrOutputParser()
# 构建处理链(用于生成和解析输出)
chain = llm | output_parser
# 调用链,并将调用记录推送到 Fiddler
response = chain.invoke("How far is moon from earth?")
print(response)
可以进一步调用更多问题:
chain.invoke("What is the temperature on Mars?")
chain.invoke("How much is 2 + 200000?")
chain.invoke("Can you write me a poem about insomnia?")
5. 使用模板的复杂调用示例
以下示例展示了如何通过 Prompt Template 构建更复杂的调用链,并结合 Fiddler 进行监控。
from langchain_core.prompts import (
ChatPromptTemplate,
FewShotChatMessagePromptTemplate,
)
# 定义 Few-Shot 示例
examples = [
{"input": "2+2", "output": "4"},
{"input": "2+3", "output": "5"},
]
# 创建 Few-Shot 消息模板
example_prompt = ChatPromptTemplate.from_messages(
[
("human", "{input}"),
("ai", "{output}"),
]
)
few_shot_prompt = FewShotChatMessagePromptTemplate(
example_prompt=example_prompt,
examples=examples,
)
# 构建最终的 Prompt 模板
final_prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a wondrous wizard of math."),
few_shot_prompt,
("human", "{input}"),
]
)
# 配置并连接 LLM
llm = OpenAI(temperature=0, streaming=True, callbacks=[fiddler_handler])
# 构建完整的调用链
chain = final_prompt | llm
# 调用链,将调用记录推送到 Fiddler
response = chain.invoke({"input": "What's the square of a triangle?"})
print(response)
应用场景分析
通过上述代码,你可以轻松将 Fiddler 集成到生成式 AI 模型的任务链中。以下是一些典型应用场景:
- 企业问答系统:实时监控生成式问答系统的响应质量。
- 内容生成:跟踪内容生成任务的性能(如博客、广告文案等)。
- 合规审计:记录模型输出以备合规和审计。
- 性能优化:通过延迟和错误分析优化模型调用。
实践建议
- 监控关键指标:结合平台的自动化性能分析功能,监控吞吐量、延迟和错误率等指标。
- 加强透明性:通过 Fiddler 的解释性工具,帮助业务部门了解模型行为。
- 迭代优化:根据 Fiddler 提供的日志和分析,持续优化模型和 Prompt。
如果遇到问题欢迎在评论区交流。
—END—