自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 资源 (8)

原创 ubuntu 18.04 安装NVIDIA驱动 cuda/cudnn + tensorflow-gpu + pytorch

电脑换了华硕新主板,需要重装系统,用的Ubuntu18.04的系统,电脑用的显卡是GTX1080Ti。在新系统中装显卡驱动过程中遇到很多坑,中间无奈搞乱环境又重装了一次系统,再次尝试,终于成功。整个过程失败次数很多,参考的教程感觉自己步步都做对了,但是最后就是不能成功运行。配置系统这种事情确实比较麻烦,心态要对,遇到问题上网搜索方法,最终总归都能解决。接下来接讲讲我装NVIDIA驱动到装tens...

2018-12-29 15:35:34 4883 2

原创 conda和pip常用方法,更换源,包的安装、更新、删除、查看

anaconda软件官网下载速度过慢,可以使用清华源的下载地址,https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=Aconda和pip可以说各有优劣。pip的模块更全更多,而conda使用更方便,安装模块时会检查环境,自动下载。conda 特别是在数据分析方面,会对某些常用的包做了专门的优化。更换源pip临...

2018-12-29 15:29:37 10711

DenseNet论文原文 Densely Connected Convolutional Networks

Densely Connected Convolutional Networks DenseNet模型,它的基本思路与ResNet一致,但是它建立的是前面所有层与后面层的密集连接(dense connection),它的名称也是由此而来。DenseNet的另一大特色是通过特征在channel上的连接来实现特征重用(feature reuse)。这些特点让DenseNet在参数和计算成本更少的情形下实现比ResNet更优的性能,DenseNet也因此斩获CVPR 2017的最佳论文奖。

2019-02-26

Spark快速大数据分析

目录 推荐序 xi 译者序 xiv 序 xvi 前言 xvii 第1章 Spark数据分析导论 1 1.1 Spark是什么 1 1.2 一个大一统的软件栈 2 1.2.1 Spark Core 2 1.2.2 Spark SQL 3 1.2.3 Spark Streaming 3 1.2.4 MLlib 3 1.2.5 GraphX 3 1.2.6 集群管理器 4 1.3 Spark的用户和用途 4 1.3.1 数据科学任务 4 1.3.2 数据处理应用 5 1.4 Spark简史 5 1.5 Spark的版本和发布 6 1.6 Spark的存储层次 6 第2章 Spark下载与入门 7 2.1 下载Spark 7 2.2 Spark中Python和Scala的shell 9 2.3 Spark 核心概念简介 12 2.4 独立应用 14 2.4.1 初始化SparkContext 15 2.4.2 构建独立应用 16 2.5 总结 19 第3章 RDD编程 21 3.1 RDD基础 21 3.2 创建RDD 23 3.3 RDD操作 24 3.3.1 转化操作 24 3.3.2 行动操作 26 3.3.3 惰性求值 27 3.4 向Spark传递函数 27 3.4.1 Python 27 3.4.2 Scala 28 3.4.3 Java 29 3.5 常见的转化操作和行动操作 30 3.5.1 基本RDD 30 3.5.2 在不同RDD类型间转换 37 3.6 持久化( 缓存) 39 3.7 总结 40 第4章 键值对操作 41 4.1 动机 41 4.2 创建Pair RDD 42 4.3 Pair RDD的转化操作 42 4.3.1 聚合操作 45 4.3.2 数据分组 49 4.3.3 连接 50 4.3.4 数据排序 51 4.4 Pair RDD的行动操作 52 4.5 数据分区(进阶) 52 4.5.1 获取RDD的分区方式 55 4.5.2 从分区中获益的操作 56 4.5.3 影响分区方式的操作 57 4.5.4 示例:PageRank 57 4.5.5 自定义分区方式 59 4.6 总结 61 第5章 数据读取与保存 63 5.1 动机 63 5.2 文件格式 64 5.2.1 文本文件 64 5.2.2 JSON 66 5.2.3 逗号分隔值与制表符分隔值 68 5.2.4 SequenceFile 71 5.2.5 对象文件 73 5.2.6 Hadoop输入输出格式 73 5.2.7 文件压缩 77 5.3 文件系统 78 5.3.1 本地/“常规”文件系统 78 5.3.2 Amazon S3 78 5.3.3 HDFS 79 5.4 Spark SQL中的结构化数据 79 5.4.1 Apache Hive 80 5.4.2 JSON 80 5.5 数据库 81 5.5.1 Java数据库连接 81 5.5.2 Cassandra 82 5.5.3 HBase 84 5.5.4 Elasticsearch 85 5.6 总结 86 第6章 Spark编程进阶 87 6.1 简介 87 6.2 累加器 88 6.2.1 累加器与容错性 90 6.2.2 自定义累加器 91 6.3 广播变量 91 6.4 基于分区进行操作 94 6.5 与外部程序间的管道 96 6.6 数值RDD 的操作 99 6.7 总结 100 第7章 在集群上运行Spark 101 7.1 简介 101 7.2 Spark运行时架构 101 7.2.1 驱动器节点 102 7.2.2 执行器节点 103 7.2.3 集群管理器 103 7.2.4 启动一个程序 104 7.2.5 小结 104 7.3 使用spark-submit 部署应用 105 7.4 打包代码与依赖 107 7.4.1 使用Maven构建的用Java编写的Spark应用 108 7.4.2 使用sbt构建的用Scala编写的Spark应用 109 7.4.3 依赖冲突 111 7.5 Spark应用内与应用间调度 111 7.6 集群管理器 112 7.6.1 独立集群管理器 112 7.6.2 Hadoop YARN 115 7.6.3 Apache Mesos 116 7.6.4 Amazon EC2 117 7.7 选择合适的集群管理器 120 7.8 总结 121 第8章 Spark调优与调试 123 8.1 使用SparkConf配置Spark 123 8.2 Spark执行的组成部分:作业、任务和步骤 127 8.3 查找信息 131 8.3.1 Spark网页用户界面 131 8.3.2 驱动器进程和执行器进程的日志 134 8.4 关键性能考量 135 8.4.1 并行度 135 8.4.2 序列化格式 136 8.4.3 内存管理 137 8.4.4 硬件供给 138 8.5 总结 139 第9章 Spark SQL 141 9.1 连接Spark SQL 142 9.2 在应用中使用Spark SQL 144 9.2.1 初始化Spark SQL 144 9.2.2 基本查询示例 145 9.2.3 SchemaRDD 146 9.2.4 缓存 148 9.3 读取和存储数据 149 9.3.1 Apache Hive 149 9.3.2 Parquet 150 9.3.3 JSON 150 9.3.4 基于RDD 152 9.4 JDBC/ODBC服务器 153 9.4.1 使用Beeline 155 9.4.2 长生命周期的表与查询 156 9.5 用户自定义函数 156 9.5.1 Spark SQL UDF 156 9.5.2 Hive UDF 157 9.6 Spark SQL性能 158 9.7 总结 159 第10章 Spark Streaming 161 10.1 一个简单的例子 162 10.2 架构与抽象 164 10.3 转化操作 167 10.3.1 无状态转化操作 167 10.3.2 有状态转化操作 169 10.4 输出操作 173 10.5 输入源 175 10.5.1 核心数据源 175 10.5.2 附加数据源 176 10.5.3 多数据源与集群规模 179 10.6 24/7不间断运行 180 10.6.1 检查点机制 180 10.6.2 驱动器程序容错 181 10.6.3 工作节点容错 182 10.6.4 接收器容错 182 10.6.5 处理保证 183 10.7 Streaming用户界面 183 10.8 性能考量 184 10.8.1 批次和窗口大小 184 10.8.2 并行度 184 10.8.3 垃圾回收和内存使用 185 10.9 总结 185 第11章 基于MLlib的机器学习 187 11.1 概述 187 11.2 系统要求 188 11.3 机器学习基础 189 11.4 数据类型 192 11.5 算法 194 11.5.1 特征提取 194 11.5.2 统计 196 11.5.3 分类与回归 197 11.5.4 聚类 202 11.5.5 协同过滤与推荐 203 11.5.6 降维 204 11.5.7 模型评估 206 11.6 一些提示与性能考量 206 11.6.1 准备特征 206 11.6.2 配置算法 207 11.6.3 缓存RDD以重复使用 207 11.6.4 识别稀疏程度 207 11.6.5 并行度 207 11.7 流水线API 208 11.8 总结 209 作者简介 210 封面介绍 210

2019-02-26

Python机器学习及实践-从零开始通往Kaggle竞赛之路

本书面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握当下最流行的机器学习、数据挖掘与自然语言处理工具,如Scikitlearn、NLTK、Pandas、gensim、XGBoost、Google Tensorflow等。 全书共分4章。第1章简介篇,介绍机器学习概念与Python编程知识;第2章基础篇,讲述如何使用Scikitlearn作为基础机器学习工具;第3章进阶篇,涉及怎样借助高级技术或者模型进一步提升既有机器学习系统的性能;第4章竞赛篇,以Kaggle平台为对象,帮助读者一步步使用本书介绍过的模型和技巧,完成三项具有代表性的竞赛任务。

2019-02-26

21个项目玩转深度学习:基于Tensorflow的实践详解

《21 个项目玩转深度学习——基于TensorFlow 的实践详解》以实践为导向,深入介绍了深度学习技术和TensorFlow 框架编程内容。 通过本书,读者可以训练自己的图像识别模型、进行目标检测和人脸识别、完成一个风格迁移应用,还可以使用神经网络生成图像和文本,进行时间序列预测、搭建机器翻译引擎,训练机器玩游戏。全书共包含21 个项目,分为深度卷积网络、RNN网络、深度强化学习三部分。读者可以在自己动手实践的过程中找到学习的乐趣,了解算法和编程框架的细节,让学习深度学习算法和TensorFlow 的过程变得轻松和高效。本书代码基于TensorFlow 1.4 及以上版本,并介绍了TensorFlow 中的一些新特性。 本书适合有一定机器学习基础的学生、研究者或从业者阅读,尤其是希望深入研究TensorFlow 和深度学习算法的数据工程师,也适合对人工智能、深度学习感兴趣的在校学生,以及希望进入大数据应用的研究者。

2019-02-26

Python爬虫开发与项目实战

Python爬虫开发与项目实战 范传辉编著 随着大数据时代到来,网络信息量也变得更多更大,基于传统搜索引擎的局限性,网络爬虫应运而生,本书从基本的爬虫原理开始讲解,通过介绍Pthyon编程语言和Web前端基础知识引领读者入门,之后介绍动态爬虫原理以及Scrapy爬虫框架,最后介绍大规模数据下分布式爬虫的设计以及PySpider爬虫框架等。

2019-02-26

算法第四版

Algorithms, Fourth Edition 算法(第4版) [美]Robert Sedgewick Kevin Wayne 译 谢路云 人 民 邮 电 出 版 社

2019-02-26

数据结构(C++语言版)第三版 答案解析_邓俊辉

习题解析!习题解析!习题解析!习题解析! 数据结构配套的教材请查看我的另外一个文档http://download.csdn.net/download/sscc_learning/10255422 配合邓俊辉老师的课程学习更好!可以在B站搜索“数据结构与算法设计 清华大学” 数据结构与算法 习题解析 第 4 版 清华大学出版社 2015年9月 版本

2018-02-23

数据结构(C++语言版)第三版_邓俊辉

结合邓俊辉老师课程进行学习,内含习题。 为了体现教材的先进性,作者研读并参考了计算学科教学大纲(ACM/IEEE Computing Curricula),结合该课程教学的国际发展趋势和对计算机人才培养的实际需求,对相关知识点 做了精心取舍,从整体考虑加以编排,据难易程度对各章节内容重新分类,给出了具体的教学计 划方案。 为了不失系统性,作者依据多年的教学积累,对各种数据结构及其算法,按照分层的思想精 心进行归纳和整理,并从数据访问方式、数据逻辑结构、算法构成模式等多个角度,理出线索加 以贯穿,使之构成一个整体,使学生在学习数据结构众多知识点的同时,获得对这门学问相关知 识结构的系统性和全局性的认识。

2018-02-23

空空如也

空空如也
提示
确定要删除当前文章?
取消 删除