将有序数组转换为平衡二叉搜索树

这篇博客介绍了如何将一个升序排列的有序数组转换为一棵平衡的二叉搜索树(BST)。通过选择数组的中间元素作为根节点,再递归地处理剩余元素,可以在O(N)时间内构建平衡BST。此外,还探讨了如何判断一棵二叉树是否平衡,提供了两种递归算法实现。
摘要由CSDN通过智能技术生成

问题

给定一个有序数组,数组元素升序排列,试将该数组转换为一棵平衡二叉搜索树(Balanced Binary Search Tree)。

 

思路

这个问题用递归很容易解出来。考虑下面一棵二叉搜索树:

这是一棵平衡的二叉搜索树,所谓平衡的定义,就是指二叉树的子树高度之差不能超过1。

如果要从一个有序数组中选择一个元素作为根结点,应该选择哪个元素呢?我们应该选择有序数组的中间元素作为根结点。

选择了中间元素作为根结点并创建后,剩下的元素分为两部分,可以看作是两个数组。这样剩下的元素在根结点左边的作为左子树,右边的作为右子树。

 

解法

由上面的思路,我们可以在O(N)的时间内从有序数组创建一棵平衡的BST,使用分治算法,代码如下:

struct node* sortedArrayToBST(int arr[], int start, int end) 
{
  if (start > end) return NULL;
  // 这里同(start+left)/2,目的是为了防止溢出.
  int mid = start + (end - start) / 2;
  struct node *root = newNode(arr[mid]);//newNode创建二叉树结点,具体代码请看文章 二叉树问题汇总(1)
  root->left = sortedArrayToBST(arr, start, mid-1);
  root->right = sortedArrayToBST(arr, mid+1, end);
  return root;
}
 
struct node* sortedArrayToBST(int arr[], int n) 
{
  return sortedArrayToBST(arr, 0, n-1);
}

扩展

如何判断一棵二叉树是平衡二叉树?

一颗平衡的二叉树是指其任意结点的左右子树深度之差不大于1。判断一棵二叉树是否是平衡的,可以使用递归算法来实现。

[cpp]   view plain copy
  1. bool is_balanced(BinaryTreeNode* pRoot)  
  2. {  
  3.     if(pRoot == NULL) //基本情况,为空的话,返回true  
  4.         return true;  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值