基于深度学习网络的5G通信链路信道估计算法

AI 与无线通信融合

将人工智能 (AI) 方法应用于无线通信应用

无论使用的是机器学习、深度学习还是强化学习工作流,都可以通过使用现成算法以及 MATLAB 和无线通信产品生成的数据来缩短开发时间。 可以轻松地利用 MATLAB 之外的现有深度学习网络;优化设计的训练、测试和验证;并简化 AI 网络在嵌入式设备、企业系统和云上的部署。

无线通信应用中使用 AI 涉及的产品

5G Toolbox                        WLAN Toolbox                              Communications Toolbox

Statistics and Machine Learning Toolbox 

Deep Learning Toolbox Reinforcement Learning Toolbox

信道估计

概念: 信道估计是一种用于估计通信信道特性的过程。它的目标是了解信道的状态,以便在接收端更好地恢复原始信号

影响因素: 包括多径传播、衰落、多普勒效应等。

信道估计的用途: 信号恢复:信道估计有助于接收端更好地恢复原始信号,减少误码率。 自适应调制和编码:信道估计可用于选择最佳的调制和编码方案,以适应当前通信信道的质量。 多天线系统:在多天线通信系统中,信道估计有助于估计不同天线之间的信道响应,以实现空间多样性和复用,提高通信质量。 移动通信:在移动通信中,信道估计有助于适应快速变化的信道条件,以维持通信的稳定性。

AI+5G信道估计

主要流程

使用深度学习工具箱和 5G 工具箱生成的数据训练卷积神经网络 (CNN) 以进行信道估计。使用经过训练的 CNN,利用物理下行链路共享信道 (PDSCH) 解调参考信号 (DM-RS) 在单输入单输出 (SISO) 模式下执行信道估计。

神经网络训练

1数据生成 2将生成的数据拆分为训练集和验证集 3定义 CNN 架构 4指定训练选项、优化器和学习率 5训练网络

数据生成

hGenerateTrainingData函数: 生成用于信道估计的训练数据256个

通过仅具有DM-RS符号的OFDM调制固定PDSCH网格插入

执行完美的定时同步和OFDM解调

提取导频符号并在每个导频符号处执行线性插值

数据预处理

CNN模型的训练数据具有固定的大小维度,网络只能接受612×14×1的网格,即612个子载波、14个OFDM符号和1个天线。         CNN将资源网格视为2D图像,因此网格的每个元素都必须是实数。在信道估计场景中,资源网格数据有复数。这些网格的实部和虚部分别输入到 CNN。         训练数据把复杂的 612 x 14 矩阵转换为实数 612 x 14 x 2 矩阵,其中第三维度表示实数和虚数分量。由于在进行预测时必须将实网格和虚网格分别输入神经网络,因此该示例将训练数据转换为 4 x 612 x 14×1N 形式的 2-D 数组,其中 N 是训练示例的数量。

定义CNN网络框架

该模型有 5 个卷积层。输入层需要大小为 612 x 14 的矩阵,其中 612 是子载波的数量,14 是 OFDM 符号的数量。每个元素都是一个实数,因为复网格的实部和虚部是分开输入的。

训练CNN网络

为了确保 CNN 不会过度拟合训练数据,训练数据被拆分为验证集和训练集。验证数据用于定期监视训练的神经网络的性能,由 valFrequency定义,每个周期验证 5 次。当验证损失停止改善时停止训练。

训练进度图

不同信道估计对比

三种信道估计原理

神经网络估计: 原理:神经网络估计是一种利用深度学习技术的信道估计方法。它基于神经网络模型,接收已知的参考信号或导频信号,以及接收端的观测数据。神经网络通过训练来学习信道估计任务,将输入信号映射到输出信道估计结果。

线性插值估计: 原理:线性插值估计是一种基于插值技术的信道估计方法。它使用已知的导频信号和接收数据,以线性方式插值未知位置的信道响应。线性插值基于信道的连续性,通过已知点之间的线性关系来估计未知点。

完美估计: 原理:完美估计是一种理想化的信道估计方法,它假设接收端已经完全了解信道的性质和状态。这种估计方法不涉及估计过程,因为它认为信道信息是已知的。

主要流程

模拟了信道传输、生成导频信号,通过比较神经网络估计、线性插值估计和实际估计在不同信噪比条件下的性能,并计算均方误差,最后绘制性能曲线,展示了信道估计方法的效果。

创建用于仿真的信道模型          

定义不同信噪比,加载预定义的仿真参数,,创建TDL 通道模型并设置通道参数。

模拟 PDSCH DM-RS 传输

通过执行以下步骤模拟 PDSCH DM-RS 传输:

生成资源网格; 插入 DM-RS 符号; 执行 OFDM 调制; 通过通道模型发送调制波形; 添加白高斯噪声; 执行完美的定时同步; 执行 OFDM 解调

基于深度学习的信道估计仿真

下面比较和可视化了各种信道估计,分别绘制了不同 SNR 下的信道估计值,其中包括线性估计器、实用估计器和神经网络估计器的结果。这些图比较神经网络估计器、实用估计器和插值估计器与实际信道的差距。

上图为SNR=0的情况下,神经网络估计器、实用估计器和插值估计器与实际信道的差异。

 SNR=5的情况下,神经网络估计器、实用估计器和插值估计器与实际信道的差异.

SNR=10的情况下,神经网络估计器、实用估计器和插值估计器与实际信道的差异.

三种不同估计器的性能比较

 该图展示了均方差随SNR变化的曲线,直观展示了深度学习信道估计、线性插值信道估计及practical估计器之间的性能差异。综上深度学习信道估计方式性能高于其他两者。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值