【风电功率预测】【多变量输入单步预测】基于BiLSTM的风电功率预测研究(Matlab代码实现)

          💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、BiLSTM模型概述

三、研究方法

四、研究优势与挑战

优势:

挑战:

五、未来研究方向

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于BiLSTM(双向长短期记忆网络)的风电功率预测研究是一个结合了深度学习技术的综合性研究,旨在提高风电功率预测的准确性和稳定性。以下是对该研究的详细分析:

一、研究背景与意义

风电作为一种重要的可再生能源,其发电量的波动性和不确定性给风电场运营和电力系统调度带来了挑战。准确的风电预测有助于风电场优化发电计划、提高发电效率,并对电力系统调度和电力市场交易具有重要意义。因此,基于BiLSTM的风电功率预测研究具有重要的应用价值。

二、BiLSTM模型概述

BiLSTM是一种特殊的循环神经网络(RNN),能够捕捉时序数据中的长期依赖关系。与传统的RNN相比,BiLSTM通过引入遗忘门、输入门和输出门等机制,有效解决了梯度消失和梯度爆炸的问题。在风电预测中,BiLSTM可以利用风电功率序列的历史数据,捕捉风电功率随时间变化的趋势和规律。

三、研究方法

基于BiLSTM的风电功率预测研究通常包括以下几个步骤:

  1. 数据收集与预处理
    • 收集风电场的历史风速、风向、温度等气象数据以及相应的风电发电量数据。
    • 对数据进行清洗、特征提取和归一化等预处理操作,以消除噪声和量纲不一致的问题。
  2. 模型构建
    • 构建BiLSTM模型,设置合适的网络结构和参数(如隐藏层单元数、学习率等)。
    • 将预处理后的数据集划分为训练集和测试集,通常采用时间序列的方式划分数据集。
  3. 模型训练
    • 使用训练集数据训练BiLSTM模型,通过调整模型参数以优化模型性能。
    • 在训练过程中,可以使用适当的损失函数(如均方误差MSE)来衡量预测值和真实值之间的差异,并通过优化算法(如随机梯度下降SGD)来调整模型参数。
  4. 模型评估与预测
    • 使用测试集数据对训练好的BiLSTM模型进行预测。
    • 通过计算均方误差(MSE)、平均绝对误差(MAE)等指标评估模型的预测性能。

四、研究优势与挑战

优势:
  1. 高精度:BiLSTM能够捕捉风电功率序列中的长期依赖关系,提高预测精度。
  2. 鲁棒性强:模型对噪声和异常值具有一定的容忍度。
  3. 适应性强:可以处理非线性、高维的时序数据,适用于复杂的风电预测场景。
挑战:
  1. 计算复杂度:BiLSTM模型的计算复杂度较高,可能导致模型训练时间较长。
  2. 参数调优:模型的性能受参数影响较大,需要进行细致的参数调优工作。
  3. 数据依赖性:模型的预测性能高度依赖于输入数据的质量和数量。

五、未来研究方向

未来研究可以进一步探索以下方向:

  1. 算法优化:研究更高效的算法优化方法,提高模型训练速度和预测精度。
  2. 数据源丰富性:收集更多样化的数据源,如卫星图像、雷达数据等,以提高模型的泛化能力。
  3. 模型评估指标:开发更精细的模型评估指标,以更全面地评估模型的性能。

综上所述,基于BiLSTM的风电功率预测研究在提高风电预测精度和稳定性方面具有显著优势,但也面临一些挑战。未来研究将致力于解决这些挑战,并推动风电预测技术的发展和应用。

📚2 运行结果

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 13
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MATLAB中使用LSTM模型进行多变量单步预测的步骤如下: 1. 数据准备:将多个变量的时间序列数据整理成适合LSTM模型输入的格式。通常情况下,数据应该是一个二维数组,其中行表示时间步,列表示变量。确保数据集包含足够数量的样本以及适当的标签。 2. 数据预处理:对数据进行标准化或归一化处理,以便在输入到LSTM之前将其缩放到一个合适的范围内。这可以通过MATLAB的标准函数或自定义函数进行实现。 3. 构建LSTM模型:在MATLAB中,可以使用深度学习工具箱来构建LSTM模型。指定模型的架构,例如输入和输出的维度,隐藏层的大小,激活函数等,并使用适当的优化算法进行训练。 4. 模型训练:使用准备好的数据集对构建好的LSTM模型进行训练。通过迭代优化算法来调整模型的权重和偏差,使其能够在训练数据上学习到相关模式和趋势。 5. 模型预测:使用模型对测试数据进行预测。将测试数据输入到训练好的LSTM模型中,通过模型的前向传播计算出预测值。 6. 结果评估:使用合适的评估指标来评估模型的预测性能,例如均方根误差(RMSE)或平均绝对百分比误差(MAPE)。根据评估结果对模型进行调整和改进。 7. 可视化结果:使用MATLAB的绘图工具,将训练和预测结果可视化展示,以便更直观地观察模型在不同变量上的预测效果。 这是一个基本的步骤框架,在实际应用中可能还需要进行更多细节的调整和优化,以使模型更加准确和可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值