💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于连续小波变换(Continuous Wavelet Transform,CWT)的轴承故障诊断研究是一个重要的研究领域,它利用CWT在时域和频域上同时分析信号的能力,对轴承故障进行精确诊断。以下是对该研究的详细探讨,包括凯斯西储大学(Case Western Reserve University,简称CWRU)轴承数据集的应用。
一、连续小波变换(CWT)简介
CWT是一种用于在时域和频域上同时分析信号的方法。它通过使用不同尺度和位置的小波函数对信号进行变换,以获取信号的局部特性。信号x(t)经过小波变换后,得到的结果是小波系数C,小波系数C是尺度a和位置b的函数。从物理意义上讲,小波系数C中蕴含着信号在各个尺度a和位置b上的信息。
CWT的核心思想是在不同尺度(频率)和位置上对信号进行小波分解。为了达到这个目的,CWT使用一个小波函数(wavelet),通常称为母小波或基本小波。这个小波函数是一个可调整尺度的波形,通过缩放和平移,可以适应信号的不同频率和位置。CWT通过在不同尺度和位置上对信号进行小波函数的卷积,生成一系列的小波系数,这些小波系数构成了时频平面上的图像,被称为时频图谱。时频图谱显示了信号在时间和频率上的局部特性,对于定位故障信号中的异常事件以及了解信号的时频结构非常有用。
二、凯斯西储大学轴承数据集
凯斯西储大学轴承数据集是用于轴承故障诊断的基准数据集,自20世纪90年代末开始被广泛应用于学术界和工程界。该数据集包含了不同类型的轴承故障数据,如内圈故障、外圈故障和滚动体故障,以及正常工况下的轴承数据。数据采集过程中,通过在轴承的驱动端和风扇端安装加速度计来记录轴承的振动信号。该数据集具有较高的信噪比,有利于提取故障特征。
数据集结构包括:
- 正常基线数据(Normal Baseline Data):记录了轴承在正常工作状态下的振动数据,不同的文件对应于不同的负载条件,并且电机的转速也随着负载的不同发生变化。
- 驱动端轴承故障数据:包括12k和48k两种采样频率下的数据,记录了不同类型的轴承故障数据,如内圈故障、外圈故障和滚动体故障,并进一步细分为不同的故障直径和位置。
- 风扇端轴承故障数据:与驱动端数据类似,但故障发生在风扇端。
三、基于CWT的轴承故障诊断研究
在基于CWT的轴承故障诊断研究中,通常使用CWT对轴承振动信号进行处理,提取故障特征。以下是一个基于CWT的轴承故障诊断流程:
- 信号采集:使用加速度计采集轴承的振动信号,得到原始信号数据。
- 信号预处理:对原始信号进行预处理,如去噪、滤波等,以提高信号质量。
- CWT变换:使用CWT对预处理后的信号进行变换,得到时频图谱。
- 特征提取:从时频图谱中提取故障特征,如频率成分、能量分布等。
- 故障诊断:根据提取的故障特征进行故障诊断,判断轴承是否存在故障以及故障类型。
四、研究案例与结果分析
研究者可以利用CWRU数据集进行基于CWT的轴承故障诊断研究。通过对不同工况下的数据进行分析,可以验证CWT在轴承故障诊断中的有效性。例如,可以选择一组正常轴承数据和一组故障数据进行对比分析。首先,对正常轴承数据进行CWT变换,得到其时频图谱。然后,对故障数据进行同样的处理。通过对比两个时频图谱,可以发现故障数据在时频域上的异常特征,如频率成分的变化、能量分布的差异等。这些异常特征可以作为故障诊断的依据。
五、结论与展望
基于连续小波变换的轴承故障诊断研究具有重要的理论意义和实用价值。CWT作为一种强大的时频分析工具,能够有效地提取轴承故障特征,为故障诊断提供有力支持。未来,可以进一步深入研究CWT在轴承故障诊断中的应用,探索更多的故障特征提取方法和诊断算法,以提高故障诊断的准确性和可靠性。同时,也可以利用其他数据集进行对比分析,进一步验证CWT在轴承故障诊断中的有效性。
综上所述,基于连续小波变换的轴承故障诊断研究是一个具有挑战性和前景的研究领域。通过不断深入研究和探索,可以为轴承故障诊断提供更加精确和有效的方法。
📚2 运行结果
生成时频图像数据集:
连续小波变换CWT参数选取
比较不同尺度:
不同带宽 变化二
探索同种故障,不同尺寸之间的差异:
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]李酉戌.基于卷积神经网络的网络故障诊断模型[J].软件导刊, 2017, 16(12):4.
[2]谭博韬,黄民,刘跃,等.基于CNN-LSTM故障诊断的自动扶梯监测软件设计[J].电子测量技术, 2023, 46(12):1-7.
[3]吴聪,李梦男,李琨.基于数据划分和ODM-CNN的滚动轴承故障诊断[J].煤矿机械, 2023.
[4]杨慧,张瑞君,陈国良.基于ICNN-BiGRU的轴承故障诊断模型[J].Journal of Mechanical & Electrical Engineering, 2022, 39(11).
[5]霍志浩,尹安,陈洁灵,等.基于CNN-LSTM的轴系系统故障诊断系统设计与实现[C]//第32届中国过程控制会议(CPCC2021)论文集.2021.
🌈4 Python代码、数据、文档说明书下载
jupyter、pycharm两种版本都有
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取