AI维基

计算智能和高性能计算

排序:
默认
按更新时间
按访问量

Meanshift和Camshift算法总结

Meanshift和Camshift算法在视频中找到并跟踪目标对象。 1. Meanshift算法原理 2. OpenCV中的Meanshift 3. Camshift算法原理 4. OpenCV中的Camshift

2017-06-07 18:48:18

阅读数:388

评论数:0

SURF算子总结

一. SURF基本原理 SURF是SIFT的加速版,它善于处理具有模糊和旋转的图像,但是不善于处理视角变化和光照变化。在SIFT中使用DoG对LoG进行近似,而在SURF中使用盒子滤波器对LoG进行近似,这样就可以使用积分图像了(计算图像中某个窗口内所有像素和时,计算量的大小与窗口大小无关)。总之...

2017-05-28 14:24:25

阅读数:1587

评论数:0

OpenCV学习日记5

1. solvePnP,cvPOSIT(过时),solvePnPRansac [1] 解析:给定物体3D点集与对应的图像2D点集,以及摄像头内参数的情况下计算物体的3D姿态。solvePnP和cvPOSIT的输出都是旋转矩阵和位移向量,不过solvePnP是精确解,cvPOSIT是近似解。因为so...

2017-05-27 10:44:35

阅读数:1202

评论数:0

图像特征匹配总结

一. Brute-Force的匹配基础 蛮力匹配器:首先在第一幅图像中选取一个关键点然后依次与第二幅图像的每个关键点进行(描述符)距离测试,最 后返回距离最近的关键点。函数原型BFMatcher::BFMatcher(int normType=NORM_L2, bool crossCheck=fa...

2017-05-22 20:39:04

阅读数:2616

评论数:0

Harris算子总结

一. Harris基本原理 Harris算子是一种基于信号的点特征提取算子,它是对Moravec算子的改进。其基本思想是:在图像中设计一个局部检 测窗口,当该窗口沿各个方向做微小移动时,考察窗口的平均能量变化,当该能量变化超过设定的阈值时,就将窗口的 中心像素点提取为角点。 二. Harris...

2017-05-22 16:03:17

阅读数:893

评论数:1

OpenCV学习日记4

1. 仿射变换 在仿射变换中,原图中所有的平行线在结果图像中同样平行。首先在原图像中找到3个点以及它们在输出图像中对应 位置,然后cv2.getAffineTransform会构造一个2x3矩阵,最后这个矩阵会被传给函数cv2.warpAffine。如下所示: import cv2 import ...

2017-05-22 10:57:47

阅读数:859

评论数:0

SIFT算子总结

一. SITF基本原理 SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、放射变换、噪声也保持一定程度的稳定性。SIFT算法实现步骤,如下所示: 1. 尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。 2. 关键点...

2017-05-21 11:11:47

阅读数:730

评论数:0

FAST算子总结

一. FAST基本原理 1. 在图像中选取一个像素点,来判断它是否为关键点。表示像素点的灰度值。 2. 选择适当的阈值。 3. 在像素点的周围选择16个像素点进行测试。 4. 如果在这16个像素点中存在个连续像素点的灰度值都高于,或者低于,那么像素点被认为是一个角 点。如上图中的虚线所示,选取...

2017-04-24 11:14:03

阅读数:1230

评论数:0

Moravec算子总结

一. Moravec基本原理 Moravec是一种基于灰度方差的角点检测算子,该算子计算图像中某个像素点沿着水平、垂直、对角线、反对角线四 个方向的灰度方差,其中的最小值选为该像素点的兴趣值,再通过局部非极大值抑制来检测是否为角点。 二. Moravec计算过程 1. 计算图像中各像素的兴趣值...

2017-04-13 15:01:52

阅读数:2150

评论数:1

SPPnet,Fast R-CNN和Faster R-CNN总结

SPP-net在卷积原始图像后的Feature Map上提取Region Proposal(ROI)的特征,并且所有的卷积计算只进行了一次,这是SPP-net与R-CNN在Region Proposal(ROI)特征提取上最大的不同。但是,现在我们有个疑问,那就是如何在Feature Map中找到...

2017-04-02 21:20:31

阅读数:484

评论数:0

R-CNN总结

R-CNN实现过程分为三个步骤:(1)利用Selective Search对每张图像生成2K个候选区域。(2)利用CNN对每个候选区域提取特征。(3)将特征输入每一类的SVM进行分类。(4)使用Bounding-Box Regression精细修正候选框位置。

2017-04-01 23:44:10

阅读数:1080

评论数:0

OpenCV学习日记3

(1)人脸:人脸检测;人脸识别;人脸对齐。 (2)三维重建:全景图像/视频拼接;三维点云重建。 (3)目标检测;目标跟踪(CamShift算法)。 (4)图像分类;图像语义分割;图像检索。 (5)人群密度估计。 (6)即时定位与地图构建(SLAM)。

2016-12-18 14:12:18

阅读数:377

评论数:0

对极几何原理

假设两个相机的内部参数一致,比如焦距、镜头等,为了数学描述的方便,需引入坐标,由于坐标是人为引入的,因此客观世界中的事物可以处于不同的坐标系中。假设两个相机的X轴方向一致,像平面重叠,坐标系以左相机为准,右相机相对于左相机是简单的平移,用坐标表示为(Tx,0,0)。

2016-11-26 22:30:10

阅读数:4136

评论数:0

单目相机标定原理

相机标定的目的是建立像素坐标系和世界坐标系之间的关系。原理是根据摄像机模型,由已知特征点的图像坐标求解摄像机的模型参数,从而可以从图像中恢复出空间点的三维坐标。所要求解的参数包括4个内参数和5个畸变参数,对于外参数,即旋转矩阵的三个旋转参数和平移向量的三个参数。

2016-11-18 15:23:09

阅读数:6872

评论数:2

Kinect学习日记1

XBOX ONE Kinect 2.0是一种3D体感技术摄影机,具有即时动态捕捉、影响辨识、麦克风输入、语音辨识、社群互动等功能。

2016-11-17 00:04:17

阅读数:379

评论数:0

PCL学习日记1

PCL(Point Cloud Library)是在吸收前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,它实现了大量点云相关的通用算法和高效数据结构,涉及到点云获取、滤波、分割、配准、检索、特征提取、识别、追踪、曲面重建、可视化等。如果说OpenCV是2D信息获取与处理的结晶,那么PC...

2016-11-09 17:08:21

阅读数:1724

评论数:0

OpenCV学习日记2

为了学习《学习OpenCV》,自己使用OpenCV 1.0版本进行操作。操作环境:Windows 7,Microsoft Visual Studio 2010,OpenCV 1.0。安装VS 2010,OpenCV 1.0,主要介绍相关配置,如下所示。

2016-08-16 14:20:08

阅读数:387

评论数:0

FFmpeg学习日记1

FFmpeg是一套可以用来记录、转换数字音频、视频,并能将其转化为流的开源计算机程序。它包括了目前领先的音/视频编码库libavcodec。可以轻易地实现多种视频格式之间的相互转换,例如可以将摄录下的视频avi等转成现在视频网站所采用的flv格式。

2016-08-16 14:20:00

阅读数:316

评论数:0

OpenCV学习日记1

1. OpenCV安装 OpenCV是一个开源的跨平台的计算机视觉类库,实现了图像处理和计算机视觉方面的很多通用算法。OpenCV的应用包括:人机互动,物体识别,图像分割,人脸识别,动作识别,运动跟踪,机器人,运动分析,机器视觉,结构分析,汽车安全驾驶等领域。自己也坚信计算机视觉会成为AR/VR,...

2016-08-16 14:19:09

阅读数:640

评论数:0

提示
确定要删除当前文章?
取消 删除