多元统计学习日记1

人工智能 专栏收录该内容
113 篇文章 2 订阅

多元正态分布是一元正态分布的推广,多元统计分析的主要理论都是建立在多元正态总体基础上的,多元正态分布是多元统计分析的基础。包括聚类分析,判别分析,主成分分析,因子分析,对应分析,典型相关分析,定性数据的建模分析,路径分析,结构方程模型,联合分析,多变量的图表示法,多维标度法等。

1.什么是统计量以及统计意义?

 

2.样本方差公式

 

3.参数估计与非参数估计的区别

[1]参数估计就是说我们已经知道了总体分布的类型,但是分布的模型中含有一个或多个未知的参数,我们需要根据样本来估计未知的参数。通常,参数估计包含点估计和区间估计。点估计就是说用某一个函数值作为总体未知参数的估计值,而区间估计就是说对于未知的参数,我们给出一个范围,并且在一定的可靠度下使这个范围包含未知参数的真值。

[2]非参数估计就是说我们不知道总体分布的类型。[对这一部分学习不多,等学习完毕之后,再来补充相关知识]

 

4.协方差和Pearson相关系数

解析:

[1]协方差

随机变量XY之间的协方差Cov(X,Y)定义,如下所示:

                                                              

直观来看,协方差表示的是两个变量总体误差的期望。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值[正相关];如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值[负相关]。

如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的,但是可以说两个随机变量是不(线性)相关的。

[2]Pearson相关系数

随机变量XY的Pearson相关系数,如下所示:

                                                                             

说明:需要特别说明的是"协方差矩阵计算的是样本不同维度之间的协方差,而不是不同样本之间的"。

 

5.抽样分布

 

6.随机矩阵

如果矩阵中至少有一个元素为随机量,那么该矩阵称为随机矩阵。实际上,正是由于随机参数的引入,使得原来确定性的矩阵元素变为随机的。

 

参考文献:

[1] 概率论与数理统计[第三版]

[2] 多元统计分析

  • 1
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值