AI维基

计算智能和高性能计算

PyCUDA学习日记1

通过PyCUDA可以让Python对CUDA进行操作,进行高性能计算,可以用于图形图像、模式识别、机器视觉等。自己在Ubuntu 14.04 Desktop LTS上面进行实验,导入pycuda之前需要安装CUDA [3],Python,PyCUDA [4]等类库。然后会继续深入学习Python,...

2016-07-22 17:01:08

阅读数:753

评论数:0

支持向量机1

SVM(Support Vector Machine)的数学理论非常完善,应用也比较成熟,它可以用于分类(Classification),回归(Regression)和离群点检测(Outliers Detection)等场景。关于SVM的优缺点就不说了,因为只有使用过才会有深刻的感受。需要说明的是...

2016-07-22 16:57:49

阅读数:425

评论数:0

Python与图像处理6

(1)Graph Cut的目标和背景的模型是灰度直方图,Grab Cut取代为RGB三通道的混合高斯模型GMM; (2)Graph Cut的能量最小化(分割)是一次达到的,而Grab Cut取代为一个不断进行分割估计和模型参数学习的交 互迭代过程; (3)Grab Cut允许不完全的标注,Grap...

2016-07-22 16:57:18

阅读数:744

评论数:0

Python与医疗图像2

医学影像学Medical Imaging,是研究借助于某种介质(如X射线、电磁场、超声波等)与人体相互作用,把人体内部组织器官结构、密度以影像方式表现出来,供诊断医师根据影像提供的信息进行判断,从而对人体健康状况进行评价的一门科学,包括医学成像系统和医学图像处理两方面相对独立的研究方向。

2016-07-22 16:53:59

阅读数:5463

评论数:0

Python与医疗图像1

PyMVPA(Python MultiVariate Pattern Analysis)是一个用来简化大型数据集的模式分类分析的Python模块。提供一些高级的抽象的常用的处理步骤和一些常用算法的实现,而且它不仅仅局限于神经影像学领域。

2016-07-12 16:46:23

阅读数:4799

评论数:0

Caffe学习日记10

1. PyCaffe环境搭建 自己用的Ubuntu Desktop 14.04 LTS操作系统,关于CUDA,Caffe的详细安装步骤参考[1],这里只介绍PyCaffe的安装。如下所示: root@ubuntu:~/GitProgram/caffe# make clean root@ubuntu...

2016-07-05 16:45:36

阅读数:653

评论数:0

Python与图像处理5

图像增强可分成两大类:频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。后者空间域法中具有代表性的算法有局部求平均值法和中值滤波(取局部邻域中的...

2016-07-04 23:41:57

阅读数:1174

评论数:0

提示
确定要删除当前文章?
取消 删除