[LeetCode]39.Combination Sum&40.Combination Sum II&216.Combination Sum III&377.Combination Sum IV

39 . Combination Sum
Medium

Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

The same repeated number may be chosen from C unlimited number of times.

Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7] and target 7,
A solution set is:
[
[7],
[2, 2, 3]
]

public List<List<Integer>> combinationSum(int[] candidates, int target) {
    List<List<Integer>> res = new ArrayList<>();
    List<Integer> cur = new ArrayList<>();
    if(candidates==null||candidates.length==0) return res;
    combin(res,cur,candidates,0,target);
    return res;
}
private void combin(List<List<Integer>> res,List<Integer> cur,int[] can,int start,int target){
    if(target==0)  res.add(new ArrayList(cur));
    for(int i=start;i<can.length;i++){
        if(can[i]>target) continue;
        cur.add(can[i]);
        combin(res,cur,can,i,target-can[i]);
        cur.remove(cur.size()-1);
    }
}

40 . Combination Sum II
Medium

Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

Each number in C may only be used once in the combination.

Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]

21ms:

public List<List<Integer>> combinationSum2(int[] candidates, int target) {
    List<List<Integer>> result = new ArrayList<>();
    List<Integer> cur = new ArrayList<>();
    if(candidates==null||candidates.length==0) return result;
    Arrays.sort(candidates);
    combin2(result,cur,candidates,0,target);
    return result;
}
private void combin2(List<List<Integer>> res,List<Integer> cur,int[] can,int start,int target){
    if(target==0) res.add(new ArrayList<Integer>(cur));
    int pre = -1;
    for(int i=start;i<can.length;i++){
        if(can[i]>target) continue;
        if(pre==can[i]) continue;
        pre = can[i];
        cur.add(can[i]);
        combin2(res,cur,can,i+1,target-can[i]);
        cur.remove(cur.size()-1);
    }
}

216 . Combination Sum III
Medium

Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.

Example 1:

Input: k = 3, n = 7

Output:

[[1,2,4]]

Example 2:

Input: k = 3, n = 9

Output:

[[1,2,6], [1,3,5], [2,3,4]]

1ms:

 public List<List<Integer>> combinationSum3(int k, int n) {
    int[] book = {1,2,3,4,5,6,7,8,9};
    List<List<Integer>> res = new ArrayList<>();
    if(9*k<n) return res;
    List<Integer> cur = new ArrayList<>();
    combin3(k,res,cur,book,n,0);
    return res;
}
private void combin3(int k,List<List<Integer>> res,List<Integer> cur,int[] book,int target,int start){
    if(target==0&&cur.size()==k) res.add(new ArrayList<Integer>(cur));

    for(int i=start;i<book.length;i++){
        if(book[i]>target) break;
        cur.add(book[i]);
        combin3(k,res,cur,book,target-book[i],i+1);
        cur.remove(cur.size()-1);
    }
}

377 . Combination Sum IV
Medium

Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

nums = [1, 2, 3]
target = 4

The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)

Note that different sequences are counted as different combinations.

Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?

超时:

public int combinationSum4(int[] nums, int target) {
    int total = 0;
    List<Integer> cur = new ArrayList<>();
    if(nums.length==0) return 0;
    return combin4(total,cur,target,nums);
}
private int combin4(int total,List<Integer> cur,int target,int[] nums){
    if(target==0) return total+1;
    for(int i=0;i<nums.length;i++){
        if(nums[i]>target) continue;
        cur.add(nums[i]);
        total = combin4(total,cur,target-nums[i],nums);
        cur.remove(cur.size()-1);
    }
    return total;
}

DP:

public int combinationSum4(int[] nums, int target) {
    int[] comb = new int[target + 1];
    comb[0] = 1;
    for (int i = 1; i < comb.length; i++) {
        for (int j = 0; j < nums.length; j++) {
            if (i - nums[j] >= 0) {
                comb[i] += comb[i - nums[j]];
            }
        }
    }
    return comb[target];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值