大会第一天重要嘉宾「LSTM 之父」Jürgen Schmidhuber、Citadel 首席人工智能官邓力、腾讯 AI Lab 副主任俞栋、英特尔 AIPG 数据科学部主任、GE Transportation Digital Solutions CTO Wesly Mukai 等知名人工智能专家参与峰会,并在主题演讲、圆桌论坛等互动形式下,从科学家、企业家、技术专家的视角,解读人工智能的未来发展。
5 月 28 日,机器之心主办的为期两天的全球机器智能峰会(GMIS 2017)进入第二天,全天议程中最受关注的是多位重要嘉宾出席的领袖峰会,包括《人工智能:一种现代方法》的作者 Stuart Russell、第四范式联合创始人兼首席科学家杨强、科大讯飞执行总裁兼消费者事业群总裁胡郁、阿尔伯塔大学教授及计算机围棋顶级专家 Martin Müller、Element AI 联合创始人 Jean-Sebastien Cournoyer 等。
28日下午,在搜狗与VIP速记创始人五轮 PK 过后,搜狗CEO 王小川发表了《人工智能技术与应用思考》的主旨演讲,和大家分享了人工智能前沿中,哪些是现在已经做到的,可以做到的,哪些是未来突破的方向。
进入正式演讲之前,王小川点评了一下刚刚结束的速记PK,「刚才的比赛很真实,机器之心的保密工作做的很好,搜狗之前一直没有拿到考题。比赛让人感觉很虐。」王小川说。至于强化学习,AlphaGo 并没有像他在2.0中预测的那样完全使用强化学习,还是用了人工数据,因此,他认为强化学习距离商用还有一段距离。论文上让人兴奋的成果还没有落地到产业方面。
人工智能发展经历了以下几个阶段,目前我们处在第三个阶段。
在谈及深度学习突破时,专业人喜欢谈感知、认知方面的突破,但是,搜狗更愿意使用识别、决策、生成这样的表达。比如,阿里巴巴指出,未来商业智能就是人工智能决策,不过,让我们最有感觉的突破是在识别和生成领域,后两个领域的突破对人机交互很有意义。
在决策方面,人工智能可以帮助提高决策效率,提升商业效率。我们可以在金融、医疗和教育等方面看到这些应用。其实,高频交易中已经使用了人工智能;小额贷款也在使用,因为弱相关数据中,人工智能比人类做得好。比如,手机弱电状态与还款概率的相关就是人工智能发现,在银行做贷款的时候是不可能用到这些特征的,今天用机器、用1000多个特征能包含更多的维度。数据高度结构化、距离金钱很近的领域,人工智能可以帮助人类做好决策。
在感知和生成领域,人工智能进展会影响人机交互。这也是搜狗感兴趣的领域。从历史趋势上看,机器在适应人,而不是反过来。另外,从键盘、鼠标到第一代苹果手机,我们开始用竖屏的输入方法,整个理念越来越自然,人机交互也会越来越自然。
深度学习虽然进展重大,但是,最难的一件事情其实是语言本身。提出图灵测试时,考虑怎么判断一个机器有智能的标准就是语言,如果机器能够用语言跟人正常沟通,就说明机器非常智能,但是目前为止,这还离我们很远。
搜狗关注的不仅仅是语言,也不只是图像,还有彼此转化:语音、图像最后是否能够把它转化成文字,或者把文字转化成语音、图像。因为语言是交流的核心,因此,搜狗努力的方向就是以文字为核心、以语言为核心,去做语音、图像甚至包括翻译的工作。以文字和语言为核心,中间还有一个介入的是机器的翻译。(我们可以看到今天屏幕右边已经展示了我们最新的机器翻译系统,去年在乌镇的世界互联网大会上已经开始使用,到今天也是我们可以看到全球惟一一个能够真正使用的语音到翻译完整的这样一个引擎。)
搜索的未来是问答,一种很深度的问答。
现在,谷歌的关键词搜索已经很智能,但是无论语音、手写输入「机器之心」,结果都是一样的:给出的可能只是微博最新新闻。如果问机器之心,今天有哪些人来到了会场?语言完整,才知道用户问什么。这么问,机器才能精确回答,这才代表了未来的方向。Google也讲到未来的搜索70%是直接给答案。我们认为,必须以问句方式来提问、以自然语言方式来提问,而不是关键词,这是我们畅想到搜索未来要做的事情。今天我们人工智能技术还不足够得高。
搜狗在做的事情之一就是垂直问答系统,没有数据库,互联网资料作为输入,已经在《一站到底》已经战胜人类选手了。这台机器动用了全部搜索的力量。我们可以与 IBM Watson 对比一下。但是,目前的成绩还不够,那些不在人类现有知识范围内的知识,无法进行问答,因为机器还不能推理,无法作答。
搜狗在做的另一个事情就是辅助对话。最有突破的工作是翻译,比如谷歌,而翻译突破,对中国人最有意义。新的翻译技术改善产品。可以用中文搜索全球信息,翻译成中文进行阅读。
搜狗还有另一个好玩的产品:海外搜索。中国人写英文论文很辛苦,输入法可以将输入的中文翻译英文,或者把英文翻译成中文,可以减轻作者的负担。
总之,文字领域实现翻译、问答的工作,也是人工智能未图突破领域的。我们整个努力工作的方向就是在文字领域里面实现对话、问答和翻译的工作,也是代表了今天在深度学习或者在人工智能最前沿还没有突破的一个领域。由于我们已经有很好的场景和相应的数据,但凡在技术里面能够带来多大的突破,就能够使得中国上亿人口得到更好的服务。