生成函数求通项公式

生成函数求通项公式:

不妨以斐波那契数列生成函数求斐波那契数列为例子,斐波那契数列为

f i = f i − 1 + f i − 2 , f 0 = 0 , f 1 = 1 f_{i}=f_{i-1}+f_{i-2},f_{0}=0,f_{1}=1 fi=fi1+fi2,f0=0,f1=1

设他的生成函数为F(x),那么有

F ( x ) = f 0 + f 1 x + f 2 x 2 + . . . . . x F ( x ) = f 0 x + f 1 x 2 + f 2 x 3 + . . . . x 2 F ( x ) = f 0 x 2 + f 1 x 3 + f 2 x 4 + . . . . F(x)=f_{0}+f_{1}x+f_{2}x^2+.....\\xF(x)=f_{0}x+f_{1}x^2+f_{2}x^3+....\\x^2F(x)=f_{0}x^2+f_{1}x^3+f_{2}x^4+.... F(x)=f0+f1x+f2x2+.....xF(x)=f0x+f1x2+f2x3+....x2F(x)=f0x2+f1x3+f2x4+....

由于 f n = f n − 1 + f n − 2 f_{n}=f_{n-1}+f_{n-2} fn=fn1+fn2,原式为

( 1 + x + x 2 ) F ( x ) = f 0 + f 1 x + f 0 x + 2 × ( f 2 x 2 + f 3 x 3 + . . . . ) (1+x+x^2)F(x)=f_{0}+f_{1}x+f_{0}x+2\times(f_{2}x^2+f_{3}x^3+....) (1+x+x2)F(x)=f0+f1x+f0x+2×(f2x2+f3x3+....)

配凑得到

( 1 + x + x 2 ) F ( x ) = f 0 x − f 0 − f 1 x + 2 × ( f 0 + f 1 x + f 2 x 2 + . . . ) (1+x+x^2)F(x)=f_{0}x-f_{0}-f_{1}x+2\times(f_{0}+f_{1}x+f_{2}x^2+...) (1+x+x2)F(x)=f0xf0f1x+2×(f0+f1x+f2x2+...)

( 1 + x + x 2 ) F ( x ) = − x + 2 × F ( x ) (1+x+x^2)F(x)=-x+2\times F(x) (1+x+x2)F(x)=x+2×F(x)

F ( x ) = x 1 − x − x 2 F(x)=\frac{x}{1-x-x^2} F(x)=1xx2x

有了生成函数,我们只需要把他转换为如下的幂级数形式,我们就可以知道通项公式,幂级数形如

a 0 + a 1 x + a 2 x 2 + . . . . a_{0}+a_{1}x+a_{2}x^2+.... a0+a1x+a2x2+....

这恰好就是函数的麦克劳林展开式,那么接下来的任务就是对 F ( x ) F(x) F(x)泰勒展开,这个形式是非常困难的,并且我们只需要展开分母,分子是已经展开好的,也就是我们需要展开 f ( x ) = 1 1 − x − x 2 f(x)=\frac{1}{1-x-x^2} f(x)=1xx21

考虑对分母因式分解,设方程 1 − x − x 2 = 0 1-x-x^2=0 1xx2=0的两个根为 x 1 , x 2 x_{1},x_{2} x1,x2,那么就有

f ( x ) = 1 ( x − x 1 ) ( x − x 2 ) = 1 x 1 − x 2 × ( 1 x − x 1 − 1 x − x 2 ) f(x)=\frac{1}{(x-x_{1})(x-x_{2})}=\frac{1}{x_{1}-x_{2}}\times (\frac{1}{x-x_{1}}-\frac{1}{x-x_{2}}) f(x)=(xx1)(xx2)1=x1x21×(xx11xx21)

容易求得两根为

x = − 1 ± 5 2 x=\frac{-1\pm\sqrt{5}}{2} x=21±5

麦克劳林展开时,有如下展开式

1 1 − x = 1 + x + x 2 + x 3 + . . . . . \frac{1}{1-x}=1+x+x^2+x^3+..... 1x1=1+x+x2+x3+.....

从而原式中 1 x − x 1 \frac{1}{x-x_{1}} xx11这一项可以展开为

1 x − x 1 = − 1 x 1 − x = − 1 x 1 × 1 1 − x x 1 = − 1 x 1 × ∑ i = 0 ∞ ( x x 1 ) i \frac{1}{x-x_{1}}=-\frac{1}{x_{1}-x}=-\frac{1}{x_{1}}\times \frac{1}{1-\frac{x}{x_{1}}}=-\frac{1}{x_{1}}\times \sum_{i=0}^{\infty}(\frac{x_{}}{x1})^i xx11=x1x1=x11×1x1x1=x11×i=0(x1x)i

因此,原式展开为

f ( x ) = 1 x 1 − x 2 × ( − 1 x 1 × ∑ i = 0 ∞ ( x x 1 ) i + 1 x 2 × ∑ i = 0 ∞ ( x x 2 ) i ) f(x)=\frac{1}{x_{1}-x_{2}}\times(-\frac{1}{x_{1}}\times \sum_{i=0}^{\infty}(\frac{x}{x_{1}})^i+\frac{1}{x_{2}}\times \sum_{i=0}^{\infty}(\frac{x}{x_{2}})^i) f(x)=x1x21×(x11×i=0(x1x)i+x21×i=0(x2x)i)

因为 F ( x ) = x f ( x ) F(x)=xf(x) F(x)=xf(x),所以

F ( x ) = 1 x 1 − x 2 × ( − 1 x 1 × ∑ i = 0 ∞ ( x x 1 ) i + 1 x 2 × ∑ i = 0 ∞ ( x x 2 ) i ) × x F(x)=\frac{1}{x_{1}-x_{2}}\times(-\frac{1}{x_{1}}\times \sum_{i=0}^{\infty}(\frac{x}{x_{1}})^i+\frac{1}{x_{2}}\times \sum_{i=0}^{\infty}(\frac{x}{x_{2}})^i)\times x F(x)=x1x21×(x11×i=0(x1x)i+x21×i=0(x2x)i)×x

要求第 n n n项系数,取 i = n − 1 i=n-1 i=n1,系数为

1 x 1 − x 2 × ( − 1 x 1 n + 1 x 2 n ) = − 1 5 × ( − ( 1 − 5 2 ) n + ( 1 + 5 2 ) n ) \frac{1}{x_{1}-x_{2}}\times(-\frac{1}{x_{1}^{n}}+\frac{1}{x_{2}^{n}})=-\frac{1}{\sqrt{5}}\times (-(\frac{1-\sqrt{5}}{2})^n+(\frac{1+\sqrt{5}}{2})^n) x1x21×(x1n1+x2n1)=5 1×((215 )n+(21+5 )n)

最后即

f n = 1 5 × ( ( 1 − 5 2 ) n − ( 1 + 5 2 ) n ) f_{n}=\frac{1}{\sqrt{5}}\times ((\frac{1-\sqrt{5}}{2})^n-(\frac{1+\sqrt{5}}{2})^n) fn=5 1×((215 )n(21+5 )n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值