前中后序遍历(非递归)

这篇博客详细介绍了如何使用迭代法实现二叉树的前序、中序和后序遍历。对于前序遍历,压栈顺序为根、右、左,最后反转结果。后序遍历则是根、左、右的压栈顺序,同样需要反序输出。中序遍历通过不断左入栈,直到为空,然后出栈并访问,再压入右节点。

前序遍历和后续遍历
前序遍历的顺序是:根 左 右 ;压栈顺序就是根 右 左
后续遍历:左 右 根 ;可以通过根 右 左 的顺序遍历,最后反序得到;压栈顺序:根 左 右
中序遍历:注意根不能先入栈了,利用一个移动结点,在while内入栈,不断左 入栈,最后出栈 ,再压右

# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

#
# 
# @param root TreeNode类 
# @return int整型一维数组
#
#先序遍历的实现根, 左, 右 需要先压入根,再将右压入,再压左,
#迭代法 ,先实现根 右 左 再reverse
class Solution:
    def postorderTraversal(self , root ):
        if root == None:
            return []
        stack = [root]
        result = []
        while stack:
            top = stack.pop()
            #将根的值压入结果
            result.append(top.val)
            #压入左,右,才能访问根,右,左
            if top.left:
                stack.append(top.left)
            if top.right:
                stack.append(top.right)
        #反序输出
        return result[::-1]

#迭代实现二叉树的先序遍历
#递归的就是用栈实现的
    def preorderTraversal(self, root):
        if not root:
            return []
        stack = [root]
        result = []
        while stack:
            top = stack.pop()
            result.append(top.val)
            if top.right:
                stack.append(top.right)
            if top.left:
                stack.append(top.left)
        
        return result

#中序遍历
    def inorderTraversal(self, root):
        if not root:
            return []
        stack = []
        p = root
        result = []
        while stack or p:
            while p:
                stack.append(p)
                p = p.left
            if stack:
                p = stack.pop()
                result.append(p.val)
                p = p.right
        return result
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值