机器学习:逻辑回归与最大熵

本文深入探讨了最大熵模型和逻辑回归在机器学习中的应用。最大熵模型是一种概率模型的学习准则,通过最大化熵来选择最佳模型,适用于条件概率分布。逻辑回归则包括二项逻辑斯蒂回归和多项逻辑斯蒂回归,用于分类任务。文章详细阐述了最大熵模型的约束优化问题和逻辑回归的优化算法,如最大似然估计,并介绍了相关计算公式。
摘要由CSDN通过智能技术生成

一、概述

(1)最大熵模型

最大熵模型是概率模型的一个学习准则,可以应用于各种概率模型。

以条件概率分布模型为例:

模型:

也是优化策略,求解max Pw,得到参数w 

策略:

约束优化问题:

对偶形式的最优化问题。

同模型,求max Pw得到参数w。

 (2)逻辑回归

二项逻辑斯蒂回归模型:

多项逻辑斯蒂回归模型: 

优化算法:

求解下面似然函数的最大估计值,得到参数w

有了w使用模型分别计算出两个类别的概率值,得到分类结果。 

二、主要内容

(1)最大熵

最大熵原理是概率模型学习的一个准则。最大熵原理认为,学习概率模型时,在所有可能的概率模型(分布)中,熵最大的模型是最好的模型。通常用约束条件来确定概率模型的集合,所以,最大熵原理也可以表述为在满足约束条件的模型集合中选取熵最大的模型。

//=================补充====

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

stephon_100

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值