最小二乘法解一元线性回归
一、一元线性回归
预备知识
(1)方差
方差是用来衡量样本分散程度的。如果样本全部相等,那么方差为0。方差越小,表示样本越集中, 反正则样本越分散。
方差计算公式如下:


python应用:
print(np.var([6, 8, 10, 14, 18], ddof=1))
Numpy里面有var方法可以直接计算方差,ddof参数是贝塞尔(无偏估计)校正系数(Bessel's correction),设置为1,可得样本方差无偏估计量。
(2)协方差
协方差表示两个变量的总体的变化趋势。如果两个变量的变化趋势一致,也就是说如果其中一个大于 自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变 量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之 间的协方差就是负值。如果两个变量不相关,则协方差为0,变量线性无关不表示一定没有其他相关 性。
协方差公式如下:


这篇博客介绍了线性回归算法,从一元线性回归的基本概念,如方差、协方差和最小二乘法,到多元线性回归的矩阵形式和Numpy实现。此外,还探讨了多项式回归如何处理非线性关系,以及通过梯度下降法和Ridge回归解决过拟合问题。最后,用scikit-learn的SGDRegressor展示了随机梯度下降法的应用。
最低0.47元/天 解锁文章
4141

被折叠的 条评论
为什么被折叠?



