为什么有的人,一脸着急和好学以及抱佛脚的样子, 面前放着正确答案却总是选不中? —-应该说, 选择题 之所以也是一种考试题, 还是有道理的.
1.
作为观众, 要学会不替这样的人捉急. 学会不去回答
2.
要学着在一旁默默地看.
3.
还是忍不住发了条博客.
4.
睡觉之前发条博客.
某个问题
从前画了下面的 图A, 不过没有考虑间隔问题
公转的同时类似月亮一样自转(保持同一侧朝向公转的中心)临界状态(图B):
只平动不转动临界状态(图 C,我在画这幅图的时候发现Geogebra的一个bug,看上去原因不甚明白,开发者视之为低优先级问题,可能会久拖不决):
要想能够转动,这个临界状态是必须的;
首先,每个链条上的矩形环节只发生平动,这个是很特殊的(之所以有上面的动图(图B),就是考虑如果不限制“平动”,解会是不同的,这个关键的“条件”在提问者自己列出方程组来的时候居然未加考虑);
其次,考虑链条曲线上平动的特定方向(垂直)上曲率最大的点位作临界状态是必然的,但是计算起来又比较困难;
再次,为了让链条能够“运动”(注意不是静止状态),任何超出临界状态的情况都会导致卡壳(反证法)。
原问题的提问者纠结于这些前提下不关键的因素(环节之间的距离),因而把问题弄成复杂的样子,表面谦恭、实则固执傲慢。【或者说,这个问题相关的各种可能约束加在一起,会成为一个超定而不是恰定的约束集;从这些约束中找出的不同的恰定约束集,对应于解决这个问题的不同的视角;从环节之间距离出发的那个视角恰好是难度比较大的】
实际计算中要考虑的其它因素,如环节之间的连接到底是环节整体中心之间还是相邻一侧的中心之间的方式(这个条件如此重要,提问者也一直不作说明),可以进一步解释他的问题。——这是让人厌恶的提问风格之一:提问者自己对问题本身一知半解或只是求一个现成的答案,让回答者去猜问题的条件;另外一种不良风格是,把自己的数值问题统统用符号形式提出,尤其在非线性方程组或非线性微分方程领域,总能把数值可解问题,用符号不可解的形式提问出来。——这也是不愿积极回答这类问题的原因。
然后, 在圆周上运动时, 似乎要满足均匀散布的原则。
有时候,弄清楚自己要问的或要解决的到底是个什么问题,可能真的比提出解决方法更重要。——哥德巴赫猜想似乎要除外。