树状数组入门(转)

原博客树状数组

1 一维树状数组
这里写图片描述

1 什么是树状数组
树状数组是一个查询和修改复杂度都为log(n)的数据结构,假设数组A[1..n],那么查询A[1]+…+A[n]的时,间是log级别的,而且是一个在线的数据结构。

2 树状数组作用
我们经常会遇到动态连续和查询问题,给定n个元素A[1~N],让我们求sum[L,R] = A[L]+…+A[R],或者更改A[i]的值。

   假设数据很小的时候,那么我们利用暴力就可以搞定,这个时候更改A[i]的复杂度为O(1),但是求和的复杂度为O(n),如果有m次求和就是O(n*m),但是m很大的时候这个方法显然是不能够满足效率的要求。这个时候我们引入树状数组,树状数组的求和和更新都是O(logN),所以大大的降低了复杂度。

3 具体分析

 1 建立树状数组就是先把A[] 和 C[]清空,然后假设有n个数那么就是做n次的update()操作就是建立树状数组,所以总的时间复杂度为O(nlogn)。

 2 设原数组为A[1..N],树状数组为c[1..N],其中c[k] = A[k-(2^t)+1] + ... + A[k]。比如c[6] = A[5] + A[6]。

    假设 A为被计数数组,C为树状数组(计数)

    0000 0001:C1 = A1
    0000 0010:C2 = A1 + A2
    0000 0011:C3 = A3
    0000 0100:C4 = A1 + A2 + A3 + A4
    0000 0101:C5 = A5
    0000 0110:C6 = A5 + A6
    0000 0111:C7 = A7
    0000 1000:C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8
    ...
    0001 0000:C16 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8+ A9 + A10 + A11 + A12 + A13 + A14 + A15+ A16



 3 也就是说,把k表示成二进制1***10000,那么c[k]就是A[1***00001] + A[1***00010] + ... + A[1***10000] 这一段数的和。



 4 设一个函数lowbit(k)为取得k的最低非零位,容易发现,根据上面的表示方法,从A[1]到A[k]的所有数的总和即为
    sum[k] = c[k] + c[k-lowestbit(k)] + c[k-lowestbit(k)-lowestbit(k-lowestbit(k))] + ... 于是可以在logk的时间内求出sum[k]。



 5 当数组中某元素发生变化时,需要改动的c值是c[k],c[k+lowestbit(k)], c[k+lowestbit(k)+lowestbit(k+lowestbit(k))] ... 这个复杂度是logN (N为最大范围)



 6 如果题目要求sum[L , R] = sum[R]-sum[L-1]
    sum[L-1] = A[1]+A[2]+...+A[L-1]
    sum[R] = A[1]+A[2]+...+A[L]+...+A[R]
    sum[R]-sum[L-1] = A[L]+A[L+2]+...+A[R]



 7 树状数组的下标严格从1开始,所以如果出现0的情况要注意加1.(因为lowbit(0)是0所以如果出现为0的时候会进入无限循环中) , 树状数组中的每个元素至少含有它本身的一个值。

3 树状数组的两类操作

1 单点更新,区间求和

   1 一维树状数组,单点更新,区间求和

   比如要更新点x ,x点的值加上val即调用add(x , val) , 求区间[1 , x]的和即为getSum(x)
int lowbit(int x){  
    return x&(-x);  
}  

int getSum(int x){  
    int sum = 0;  
    while(x){  
        sum += treeNum[x];  
        x -= lowbit(x);  
    }  
    return sum;  
}  

void add(int x , int val){  
    while(x < MAXN){  
         treeNum[x] += val;  
         x += lowbit(x);  
    }  
}  

2 区间更新,单点求和
1 一维树状数组

    更改区间[x , y],区间[x , y]里面的每个数全部加上val , 查询点k的值

    区间[x , y]加上val相当于点x加上val , 点y+1减去val,那么求k点的值就等于[1,k]的和
int lowbit(int x){  
    return x&(-x);  
}  

int getSum(int x){  
    int sum = 0;  
    while(x){  
        sum += treeNum[x];  
        x -= lowbit(x);  
    }  
    return sum;  
}  

void add(int x , int val){  
    while(x < MAXN){  
         treeNum[x] += val;  
         x += lowbit(x);  
    }  
}  

void solve(){  
    // 把区间[x , y]每一点加上val  
    add(x , val);  
    add(y+1 , -val);  
    // 计算点k的值  
    int num = getSum(k);  
}  

5 常用的技巧

假设初始化数组每个点的值为1,那么我们知道对于一维的树状数组来说,我们知道treeNum[i] = lowbit(i) . 对于二维树状数组来说treeNum[i][j] = lowbit(i)*lowbit(j)

void init(){  
    memset(treeNum , 0 , sizeof(treeNum));  
    for(int i = 1 ; i < MAXN ; i++){  
        num[i] =1;  
        treeNum[i] = lowbit(i);  
    }  
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值