【DP计划】11.3——[BZOJ]股票交易(单调队列优化DP)MEDIUM

版权声明:我是一只蒟蒻,欢迎大家批评建议 https://blog.csdn.net/stevensonson/article/details/83721856

Description
最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律。 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi,第i天的股票卖出价为每股BPi(数据保证对于每个i,都有APi>=BPi),但是每天不能无限制地交易,于是股票交易所规定第i天的一次买入至多只能购买ASi股,一次卖出至多只能卖出BSi股。 另外,股票交易所还制定了两个规定。为了避免大家疯狂交易,股票交易所规定在两次交易(某一天的买入或者卖出均算是一次交易)之间,至少要间隔W天,也就是说如果在第i天发生了交易,那么从第i+1天到第i+W天,均不能发生交易。同时,为了避免垄断,股票交易所还规定在任何时间,一个人的手里的股票数不能超过MaxP。 在第1天之前,lxhgww手里有一大笔钱(可以认为钱的数目无限),但是没有任何股票,当然,T天以后,lxhgww想要赚到最多的钱,聪明的程序员们,你们能帮助他吗?
Input
输入数据第一行包括3个整数,分别是T,MaxP,W。 接下来T行,第i行代表第i-1天的股票走势,每行4个整数,分别表示APi,BPi,ASi,BSi。
Output
输出数据为一行,包括1个数字,表示lxhgww能赚到的最多的钱数。
Sample Input
5 2 0

2 1 1 1

2 1 1 1

3 2 1 1

4 3 1 1

5 4 1 1

Sample Output
3

HINT
对于30%的数据,0 < =W 对于50%的数据,0 < =W 对于100%的数据,0 < =W
对于所有的数据,1 < =BPi < =APi < =1000,1 < =ASi,BSi < =MaxP


想要写出这道题的状态转移方程是很简单的。
f[i][j]表示过了i天,手里还剩j股股票,所可以赚到的最大值,那么
f[i][j]=f[i-1][j]   //一股不买也不卖
f[i][j]=max(f[i][j],f[i-W-1][k]-Api*(k-j))  //k∈[j,j+Asi]   //买入一些股
f[i][j]=max(f[i][j],f[i-W-1][k]+Bpi*(j-k))  //k∈[j-Bsi,j]   //卖出一些股
那么最后的状态就是f[T][0]f[T][0],显然最后一天要卖出所有股才优。
那么这样的转移是O(n3)O(n^3)的,我们可以枚举i,ji,j但是对于kk,我们可以进行单调队列维护,我们维护一个递减的单调队列,如果当前队头所在的位置已经不在当前区间里了,那么队头就后移一位。直到对头在当前区间里。由于单调递减,所以最优答案就是从目前最新的队头转移而来。这样优化之后复杂度就变成O(n2)O(n^2)的了。
转移完之后要插入,那么显然当前的值减去(或加)它们之间的买入卖出差(因为位于靠后的位置回避当前位置多买或卖一些股)依旧大一队尾,那就将队尾向左移一位,来维护队列单调递减的性质。
(维护队尾这一段可能有点玄乎,因为不是特别好表达,具体看代码)
#include<bits/stdc++.h>
#define MAXN 2005
#define ll long long
using namespace std;
ll read(){
    char c;ll x;while(c=getchar(),c<'0'||c>'9');x=c-'0';
    while(c=getchar(),c>='0'&&c<='9') x=x*10+c-'0';return x;
}
ll h,t,T,MaxP,W,q[2005],f[2005][2005];
struct node{
    ll ap,bp,as,bs;
}F[MAXN];
int main()
{
    T=read();MaxP=read();W=read();
    for(ll i=1;i<=T;i++){
        F[i]=(node){read(),read(),read(),read()};
    }
    memset(f,~0x3f,sizeof(f));f[0][0]=0;
    for(int i=1;i<=W;i++){
        for(int j=0;j<=MaxP;j++) f[i][j]=f[i-1][j];
        for(int j=1;j<=F[i].as;j++) f[i][j]=max(f[i][j],-j*F[i].ap);
    }
    for(ll i=W+1;i<=T;i++){
        for(ll j=0;j<=MaxP;j++) f[i][j]=f[i-1][j];
        h=1;t=0;q[0]=0;
        for(ll j=0;j<=MaxP;j++){
            while(h<=t&&q[h]<j-F[i].as) h++;
            if(h<=t) f[i][j]=max(f[i][j],f[i-W-1][q[h]]-F[i].ap*(j-q[h]));
            while(h<=t&&f[i-W-1][j]>f[i-W-1][q[t]]-F[i].ap*(j-q[t])) t--;
            q[++t]=j;
        }
        memset(q,0,sizeof(q));h=1,t=0;q[0]=MaxP+1;
        for(ll j=MaxP;j>=0;j--){
            while(h<=t&&q[h]>j+F[i].bs) h++;
            if(h<=t) f[i][j]=max(f[i][j],f[i-W-1][q[h]]+F[i].bp*(q[h]-j));
            while(h<=t&&f[i-W-1][j]>f[i-W-1][q[t]]+F[i].bp*(q[t]-j)) t--;
            q[++t]=j;
        }
    }
    printf("%lld",f[T][0]);
    return 0;
}

展开阅读全文

没有更多推荐了,返回首页