什么是生成式AI? 他如何工作?

本文为博客What Is Generative AI? How Does It Work?的翻译加笔记。

非常推荐这篇文章,理由是1)他比较系统 2)易懂,不太艰深 3)作者Greg Pavlik是Oracle人工智能和数据管理服务高级副总裁,算是专业人士

斜体文字就是我的注释,其余是翻译,粗体是我标注的重点

生成式人工智能是一种相对较新的人工智能形式,与前身不同,它可以通过训练数据推断来创建新内容。 自 2022 年秋季第一个生成式 AI 消费者聊天机器人向公众发布以来,其生成类人书写、图像、音频和视频的非凡能力吸引了全世界的想象力。麦肯锡公司 2023 年 6 月的一份报告估计,通过提高工人生产力,生成式人工智能每年有可能为全球经济增加 6.1 至 7.9 万亿美元。 考虑到这一点,同一研究将所有人工智能技术提高生产力的年度经济潜力定为 17.1 至 25.6 万亿美元。 因此,尽管生成式人工智能在 2023 年年中“炙手可热”,但它仍然只是整个人工智能“牛排”的一部分。

但每一个动作都会产生相等且相反的反应。 因此,除了其卓越的生产力前景之外,生成式人工智能还带来了新的潜在商业风险,例如不准确、侵犯隐私和知识产权暴露,以及大规模经济和社会破坏的能力。 例如,如果不进行大量的工人再训练工作,生成式人工智能的生产力优势就不太可能实现,即便如此,无疑也会使许多人失去当前的工作。 因此,世界各地的政府政策制定者,甚至一些科技行业高管,都在倡导快速采用人工智能法规。

本文深入探讨了生成式人工智能的前景和危险:它是如何工作的; 最直接的应用、用例和示例; 它的局限性; 其潜在的商业利益和风险; 使用它的最佳实践; 以及对其未来的一瞥。

什么是生成式AI

生成式人工智能 (GAI) 是人工智能机器学习技术的一个子集的名称,这些技术最近开发出了根据文本提示快速创建内容的能力,文本提示的范围可以从短而简单到非常长而复杂。 不同的生成式人工智能工具可以产生新的音频、图像和视频内容,但最激发想象力的是面向文本的对话式人工智能。 实际上,人们可以与经过文本训练的生成式人工智能模型进行对话并向其学习,就像与人类进行交流一样。

2022 年 11 月 30 日,基于 OpenAI GPT-3.5 神经网络模型的聊天机器人 ChatGPT 发布后的几个月里,生成式 AI 风靡全球。GPT 代表Generative Pretrained Transformer,主要描述该模型的底层神经网络架构 。

ChatGPT的介绍,可参见文章ChatGPT不是一天建成的:人类如何用66年实现今天的AI聊天?

对话式聊天机器人的早期实例有很多,始于 20 世纪 60 年代中期麻省理工学院的 ELIZA。 但之前的大多数聊天机器人,包括 ELIZA,都是完全或很大程度上基于规则的,因此它们缺乏上下文理解。 他们的反应仅限于一组预定义的规则和模板。 相比之下,现在出现的生成式人工智能模型没有这样的预定义规则或模板。 打个比方来说,它们是原始的、空白的大脑(神经网络),通过对现实世界数据的训练来接触世界。 然后,他们独立开发智力(世界如何运作的代表性模型),并用它来根据提示生成新颖的内容。 即使人工智能专家也不清楚他们是如何做到这一点的,因为算法是在系统训练时自行开发和调整的

关于最后一点,可以参考Ali Rahimi 在NIPS 2017上的演讲,以及后续Yann LeCun的回应

大大小小的企业都应该对生成式人工智能将技术自动化的优势带入知识工作的潜力感到兴奋,而到目前为止,知识工作在很大程度上抵制自动化。 生成式人工智能工具改变了知识工作自动化的计算方式; 他们能够根据简单的英语文本提示生成类似人类的文字、图像、音频或视频,这意味着他们可以与人类合作伙伴协作生成代表实际工作的内容

Oracle 董事长兼首席技术官拉里·埃里森 (Larry Ellison) 在该公司 2023 年 6 月的财报电话会议上表示:“未来几年,许多公司将训练自己的专业大型语言模型。”

视频:What Is Generative AI? 2分钟,还不错

生成式AI与AI

人工智能是计算机科学的一个广阔领域,生成式人工智能只是其中的一小部分,至少目前是这样。 当然,生成式人工智能与传统人工智能有许多共同之处。 但也存在一些明显的区别。

共同属性:两者都依赖于大量数据进行训练和决策(尽管生成式人工智能的训练数据可能要大几个数量级)。 两者都从数据中学习模式,并利用这些“知识”来做出预测并调整自己的行为。 或者,随着时间的推移,可以通过根据反馈或新信息调整其参数来改进两者。

区别:传统的人工智能系统通常被设计为比人类更好或以更低的成本执行特定任务,例如检测信用卡欺诈、确定驾驶方向,或者(可能很快就会推出)驾驶汽车。 生成式人工智能的范围更广它创建类似于训练数据但无法在其训练数据中找到的新的原创内容。 此外,传统的人工智能系统(例如机器学习系统)主要根据特定于其预期功能的数据进行训练,而生成式人工智能模型则根据大型、多样化的数据集进行训练(然后,有时会根据与特定功能相关的小得多的数据量进行微调) 特定功能)。 最后,传统人工智能几乎总是使用监督学习技术对标记/分类数据进行训练,而生成人工智能必须始终使用无监督学习进行训练,至少在最初是这样(其中数据未标记,并且人工智能软件没有得到明确的指导)。

另一个值得注意的区别是,用一位人工智能研究人员的话来说,生成人工智能基础模型的训练“极其昂贵”。 比如说,1 亿美元只是用于启动所需的硬件以及等效的云服务成本,因为这是大多数人工智能开发完成的地方。 然后是所需的大量数据的成本

要点

  • 生成式人工智能于 2022 年 11 月引起轰动,预计很快将为全球经济每年增加数万亿美元。
  • 人工智能是一种基于神经网络的机器学习形式,经过大量数据集的训练,可以根据用户的自然语言提示创建新颖的文本、图像、视频或音频内容。
  • 市场研究人员预测,该技术将通过大幅加速知识工作者的生产力增长来促进经济增长,而知识工作者的任务此前一直难以实现自动化。
  • 生成式人工智能伴随着企业必须缓解的风险和限制,例如**“幻觉”不正确或虚假信息以及无意中侵犯版权**。
  • 预计这还将导致工作性质发生重大变化,包括可能失业和角色重组。

生成式AI解释

对于大大小小的企业来说,生成式人工智能看似神奇的承诺是,它可以将技术自动化的优势带入知识工作。 或者,正如麦肯锡的一份报告所说,“以前自动化潜力最低的,涉及决策和协作的活动”。

从历史上看,技术在自动化日常或重复性任务方面最为有效,这些任务的决策是已知的,或者可以根据特定的、易于理解的规则以高度的信心确定。 想想制造业,其精确的装配线重复,或会计,其由行业协会制定的监管原则。 但生成式人工智能有潜力完成更复杂的认知工作。 举一个公认的极端例子,生成式人工智能可能会在行业颠覆期间响应企业管理者提出的替代想法和场景的提示,从而帮助组织制定战略。

麦肯锡在报告中评估了 16 个业务功能的 63 个用例,得出的结论是,生成式 AI 可以实现的数万亿美元潜在价值中,75% 将来自其中四个功能的用例子集:客户运营 、营销和销售、软件工程以及研发。 尽管也有一些突出的行业,但各行业的收入增长前景分布更为均匀:就可能增加的行业收入百分比而言,高科技行业位居榜首,其次是银行、制药和医疗产品、教育、电信和医疗保健。

另外,Gartner 的一项分析与麦肯锡的预测相关:例如,到 2025 年,超过 30% 的新药和新材料将使用生成式 AI 技术发现,而目前这一数字为零。同样,到 2025 年,来自大型组织的 30% 的出站营销信息将被合成生成,高于 2022 年的 2%。在一项在线调查中,Gartner 发现,当 2,500 名高管被问及他们的组织在生成式 AI 的哪些方面进行投资时,客户体验和保留率是最重要的回答(占 38%)。

这一切之所以能够如此迅速地发生,是因为与数十年来悄然实现商业流程自动化并为商业流程增加价值的传统人工智能不同,得益于 ChatGPT 类人的对话才能,生成式人工智能迅速进入了全世界的意识。

这也揭示并吸引了人们关注专注于其他模式的生成人工智能技术。 每个人似乎都在尝试使用每个领域专门的一种或多种模型来编写文本,或制作音乐、图片和视频。 因此,由于许多组织已经在尝试生成人工智能,它对商业和社会的影响可能是巨大的,而且发生的速度会惊人地快。

明显的缺点是知识工作将会发生变化。 个人角色会发生变化,有时会发生很大的变化,因此员工需要学习新技能。 一些工作岗位将会消失。 然而,从历史上看,诸如生成式人工智能之类的重大技术变革为经济带来的就业机会总是多于其消除的就业机会(且价值更高)。 但这对于那些工作被取消的人来说并没有多少安慰。

生成式AI如何运作?

对于生成式人工智能模型如何工作的问题有两个答案。 根据经验,我们知道它们是如何详细工作的,因为人类设计了各种神经网络实现来准确地完成他们所做的事情,并在几十年内迭代这些设计以使它们变得越来越好。 人工智能开发人员确切地知道神经元是如何连接的; 他们设计了每个模型的训练过程。 然而,在实践中,没有人确切知道生成式人工智能模型是如何做到这一点的——这是一个令人尴尬的事实。

“我们不知道他们如何完成实际的创造性任务,因为神经网络层内部发生的事情对于我们来说太复杂了,至少在今天还是这样”,Dean Thompson ,曾担任多家人工智能初创公司的首席技术官,这些初创公司多年来被 LinkedIn 和 Yelp 等公司收购,目前他仍担任高级软件工程师,从事大型语言模型 (LLM) 工作。 生成式人工智能产生新的原创内容的能力似乎是已知事物(即其结构和训练)的一个新兴属性。 因此,虽然有很多东西可以解释我们所知道的情况,但像 GPT-3.5 这样的模型实际上在内部做什么——它在想什么,如果你愿意的话——还有待弄清楚。 一些人工智能研究人员相信,这一点将在未来 5 到 10 年内为人所知; 其他人不确定它是否会被完全理解。

以下概述了我们对生成式 AI 工作原理的了解:

  • 从大脑开始。 Jeff Hawkins 在其 2004 年出版的《论智能》一书中表示,理解生成式人工智能模型的一个很好的起点是人脑。 霍金斯是一名计算机科学家、脑科学家和企业家,他在 PC 论坛 2005 年的一次会议上展示了他的工作,该论坛是由科技投资者埃丝特·戴森 (Esther Dyson) 领导的领先技术高管的年度会议。 霍金斯假设,在神经元层面,大脑的工作原理是不断预测接下来会发生什么,然后从预测与随后的现实之间的差异中学习。 为了提高其预测能力,大脑建立了对世界的内部表征。 在他的理论中,人类智力就是从这个过程中产生的。 无论是否受到霍金斯的影响,生成式人工智能正是以这种方式运作的。 而且,令人惊讶的是,它表现得好像很聪明。

  • 构建人工神经网络。 所有生成式人工智能模型都始于软件编码的人工神经网络。 汤普森说,神经网络的一个很好的视觉隐喻是想象熟悉的电子表格,但在三个维度中,因为人工神经元是分层堆叠的,类似于真实神经元在大脑中的堆叠方式。 汤普森指出,人工智能研究人员甚至将每个神经元称为“细胞”,每个细胞都包含一个将其与网络中其他细胞联系起来的公式——模仿大脑神经元之间具有不同强度的连接方式。

每层可能有数十、数百或数千个人工神经元,但神经元的数量并不是人工智能研究人员关注的重点。 相反,他们通过神经元之间的连接数量来衡量模型。 这些连接的强度根据其元胞方程的系数而变化,这些系数通常称为“权重”或“参数”。 例如,当您读到 GPT-3 模型有 1750 亿个参数时,就会提到这些连接定义系数。 据传最新版本 GPT-4 拥有数万亿个参数,但这一消息尚未得到证实。 有一些神经网络架构具有不同的特征,适合以特定的方式生成内容; 例如,transformer架构似乎最适合大型语言模型。

  • 教授新生的神经网络模型。 大语言模型需要处理大量文本,并负责进行简单的预测,例如序列中的下一个单词或一组句子的正确顺序。 但在实践中,神经网络模型以称为标记(token)的单位工作,而不是单词。

“一个常见的单词可能有自己的标记,不常见的单词肯定会由多个标记组成,有些标记可能只是一个空格后跟‘th’,因为三个字符的序列非常常见,”汤普森说。 为了进行每个预测,模型在特定人工神经元堆栈的底层输入一个标记; 该层处理它并将其输出传递到下一层,下一层处理并传递其输出,依此类推,直到最终输出从堆栈顶部出现。 堆栈大小可能会有很大差异,但通常约为数十层,而不是数千或数百万层。

在早期训练阶段,模型的预测效果不是很好。 但每次模型预测一个标记时,它都会根据训练数据检查其正确性。 无论正确还是错误,“反向传播”算法都会调整做出该预测的堆栈的每个单元中的参数,即公式的系数。 调整的目的是使正确预测的可能性更大

汤普森说:“对于正确的答案,它也会这样做,因为正确的预测可能只有 30% 的确定性,但这 30% 是所有其他可能答案中最多的。” “所以,反向传播试图将 30% 变成 30.001%,或者类似的东西。”

在模型对数万亿个文本标记重复此过程后,它变得非常擅长预测下一个标记或单词。 经过初步训练后,生成式 AI 模型可以通过监督学习技术进行微调,例如基于人类反馈的强化学习 (RLHF)。 在 RLHF 中,模型的输出被提供给人类评审员,他们做出二元的正面或负面评估(赞成或反对),并将其反馈给模型。 RLHF 用于微调 OpenAI 的 GPT 3.5 模型,以帮助创建病毒式传播的 ChatGPT 聊天机器人。

  • 模型如何回答我的问题? 这是一个谜。 汤普森是这样解释目前的理解状态的:“我的解释中有一个巨大的‘我们也不知道’。 我们所知道的是,它将您的整个问题视为一系列标记,并在第一层同时处理所有这些。 我们知道它然后在下一层中处理第一层的输出,依此类推。 然后我们知道它使用顶层进行预测,也就是说,生成第一个令牌,并且第一个令牌在整个系统中表示为给定的,以生成下一个令牌,依此类推。

“下一个合乎逻辑的问题是,在所有这些处理过程中,它想到了什么,又是如何想到的? 所有这些层都做了什么? 明确的答案是,我们不知道。 我们不知道。 你可以研究一下。 你可以观察一下。 但它的复杂性超出了我们的分析能力。 这就像人们大脑上的 F-MRI(功能性磁共振成像)一样。 这是模型实际所做的最粗略的草图。 我们不知道。”

尽管存在争议,但由十多名研究人员组成的小组在 2022 年秋季提前访问了 GPT-4,他们得出的结论是,该模型应对他们提出的复杂挑战的智能,以及它所展示的广泛专业知识,表明 GPT-4 已经获得了某种形式的通用智能。 换句话说,它建立了一个关于世界如何运作的内部模型,就像人脑一样,并使用该模型来推理提出的问题。 一位研究人员告诉“This American Life”播客,当他要求 GPT-4“给我一份巧克力饼干食谱,但以一个非常抑郁的人的风格写的”时,他经历了一个“神圣的时刻” ,”模型回答道:“原料:1杯软化的黄油,如果你能找到软化它的能量的话。 1 茶匙香草精,人造幸福香料。 1杯半甜巧克力片,小小的快乐最终会消失。”

为什么生成式AI很重要?

理解生成人工智能重要性的一个有用方法是将其视为开放式创意内容的计算器。 就像计算器自动执行日常和平凡的数学一样,使人们能够专注于更高级别的任务,生成式人工智能有潜力自动执行构成大部分知识工作的更常规和平凡的子任务,使人们能够专注于更高层次的任务。

考虑一下营销人员在从他们经常面临的非结构化、不一致和脱节数据中获取可行见解时所面临的挑战。 传统上,他们首先需要整合这些数据,这需要大量的定制软件工程来为不同的数据源(例如社交媒体、新闻和客户反馈)提供通用的结构。

“但是对于大语言模型,你可以简单地将来自不同来源的信息直接输入到提示中,然后询问关键见解,或者优先考虑哪些反馈,或者请求情绪分析——这就会起作用,”高级教授巴西姆·拜格(Basim Baig),在Duolingo 专门负责人工智能和安全的工程经理说: “大语言模型的力量在于它可以让你跳过庞大且成本高昂的工程步骤。”

进一步思考,汤普森建议产品营销人员可以使用大语言模型来标记自由格式文本以进行分析。 例如,假设您有一个庞大的社交媒体数据库,其中包含有关您产品的提及。 您可以编写应用大语言模型和其他技术的软件来:

  • 从每个社交媒体帖子中提取主题。
  • 将各个帖子中出现的特殊主题分组为重复出现的主题。
  • 确定哪些帖子支持每个重复出现的主题。

然后您可以将结果应用到:

  • 研究最常见的重复主题,点击查看示例。
  • 跟踪重复主题的兴衰。
  • 要求大语言模型更深入地研究反复出现的主题,以反复提及产品特性。

生成式AI模型

生成式人工智能代表了基于日益丰富的神经网络变体池的广泛应用类别。 尽管所有生成式人工智能都符合生成式人工智能如何工作部分的总体描述,但实现技术有所不同,以支持不同的媒体(例如图像与文本),并结合研究和行业的进步。

神经网络模型使用人工神经元及其互连的重复模式。 适用于任何应用(包括生成式人工智能)的神经网络设计通常会重复相同的神经元模式数百或数千次,通常会重复使用相同的参数。 这是所谓的“神经网络架构”的重要组成部分。 自 20 世纪 80 年代以来,新架构的发现一直是人工智能创新的一个重要领域,通常是由支持新媒介的目标驱动的。 但是,一旦发明了一种新的架构,通常会通过以意想不到的方式使用它来取得进一步的进展。 额外的创新来自于不同架构元素的组合。

两种最早且仍然最常见的架构是:

  • 循环神经网络 (RNN) 出现于 20 世纪 80 年代中期,并一直在使用。 RNN 展示了人工智能如何学习并用于自动化依赖于序列数据的任务,即序列包含含义的信息,例如语言、股票市场行为和网络点击流。 RNN 是许多音频 AI 模型的核心,例如音乐生成应用程序; 想想音乐的顺序性和基于时间的依赖性。 但他们也擅长自然语言处理(NLP)。 RNN 还用于传统的人工智能功能,例如语音识别、笔迹分析、金融和天气预报,以及预测许多其他应用中能源需求的变化。
    • 大约 10 年后,卷积神经网络 (CNN) 出现了。 它们专注于网格状数据,因此擅长空间数据表示并可以生成图片。 流行的文本到图像生成 AI 应用程序(例如 Midjourney 和 DALL-E)使用 CNN 生成最终图像。

尽管 RNN 仍然被频繁使用,但对 RNN 的不断改进的努力带来了突破:

  • Transformer 模型GPT中的T,所以T就是一种模型)已经发展成为一种比 RNN 更灵活、更强大的序列表示方式。 它们具有多个特征,使它们能够以大规模并行方式处理序列数据(例如文本),而不会失去对序列的理解。 顺序数据的并行处理是 ChatGPT 能够如此快速、良好地响应直白对话提示的关键特征之一。

研究、私营企业和开源努力创建了有影响力的模型,在更高层次的神经网络架构和应用上进行创新。 例如,在训练过程、如何整合训练反馈来改进模型,以及如何将多个模型组合到生成式人工智能应用程序中,都出现了关键的创新。 以下是一些最重要的生成式人工智能模型创新的概述:

  • 变分自动编码器 (VAE) 使用神经网络架构和训练过程中的创新,并且通常被纳入图像生成应用程序中。 它们由编码器和解码器网络组成,每个网络可能使用不同的底层架构,例如 RNN、CNN 或 Transformer。 编码器学习图像的重要特征和特性,压缩该信息,并将其作为表示存储在内存中。 然后解码器使用该压缩信息来尝试重新创建原始信息。 最终,VAE 学会生成与其训练数据相似的新图像。
  • 生成对抗网络 (GAN) 可用于多种模式,但似乎对视频和其他图像相关应用有特殊的亲和力。 GAN 与其他模型的不同之处在于,它们由两个在训练时相互竞争的神经网络组成。 例如,在图像的情况下,“生成器”创建图像,“鉴别器”决定图像是真实的还是生成的。 生成器不断地试图愚弄鉴别器,鉴别器总是试图捕获生成器的行为。 在大多数情况下,两个相互竞争的神经网络基于 CNN 架构,但也可能是 RNN 或 Transformer 的变体。
  • 扩散模型将多个神经网络合并到一个整体框架中,有时会集成不同的架构,例如 CNN、Transformer 和 VAE。 扩散模型通过压缩数据、添加噪声、去噪并尝试重新生成原始数据来学习。 流行的稳定扩散工具分别在第一步和最后一步使用 VAE 编码器和解码器,并在噪声/去噪步骤中使用两种 CNN 变体。

生成式AI有哪些应用?

虽然世界才刚刚开始触及生成式人工智能潜在用途的表面,但很容易看出企业如何通过将其应用到运营中而受益。 考虑生成式人工智能如何改变客户互动、销售和营销、软件工程以及研发等关键领域

客户服务方面,早期的人工智能技术实现了流程自动化,引入了客户自助服务,但也带来了新的客户挫败感。 生成式人工智能有望为客户和服务代表带来好处,聊天机器人可以适应不同的语言和地区,创造更加个性化和易于访问的客户体验。 当需要人工干预来解决客户的问题时,客户服务代表可以与生成式人工智能工具实时协作,找到可行的策略,从而提高交互的速度和准确性。 生成式人工智能可以快速利用整个大型企业的知识库并综合新的客户投诉解决方案,从而提高服务人员有效解决特定客户问题的能力,而不是依赖过时的电话树和呼叫转接,直到找到答案 ——或者客户失去耐心。

营销领域,生成式人工智能可以自动集成和分析不同来源的数据,这将大大加快获得洞察的时间,并直接导致更明智的决策和更快地制定上市策略。 营销人员可以利用这些信息以及人工智能生成的其他见解来制作新的、更有针对性的广告活动。 这减少了员工收集人口统计和购买行为数据所需的时间,让他们有更多的时间来分析结果和集思广益新想法。

B2B 营销机构 Stein IAS 的董事长兼首席品牌官 Tom Stein 表示,每个营销机构,包括他的公司,都在高速探索此类机会。 但是,斯坦指出,机构的后端流程也有更简单、更快的方法。

“如果我们收到 RFI(信息请求),通常 70% 到 80% 的 RFI 会要求提供与其他 RFI 相同的信息,可能会根据该公司的具体情况存在一些上下文差异,”Stein 说道。 也是 2023 年戛纳创意节创意 B2B 奖评委会主席。 “让任意数量的人工智能工具为我们完成这项工作并不是那么复杂……所以,如果我们收回 80% 的时间,并且可以花这些时间为 RFI 增加价值, 只要让它唱歌,从各个方面来说都是一场胜利。 类似的过程还有很多。”

软件开发人员与生成式人工智能合作可以简化和加快从规划到维护的每一步流程。 在初始创建阶段,生成式人工智能工具可以分析和组织大量数据,并建议多种程序配置。 一旦编码开始,人工智能就可以在发布之前和之后测试代码并排除故障、识别错误、运行诊断并提出修复建议。 Thompson 指出,由于许多企业软件项目都包含多种编程语言和学科,因此他和其他软件工程师使用人工智能在不熟悉的领域进行自我教育,速度比以前快得多。 他还使用生成式人工智能工具来解释不熟悉的代码并识别具体问题。

研发方面,生成式人工智能可以在产品设计的初始阶段提高市场研究的速度和深度。 然后,人工智能程序,特别是那些具有图像生成功能的程序,可以在模拟和测试潜在产品之前创建其详细设计,为工作人员提供在整个研发周期中进行快速有效调整所需的工具。

甲骨文创始人埃里森在六月的财报电话会议上指出,“专业的大语言模型将加速新救命药物的发现。” 药物发现是一种研发应用,它利用生成模型产生错误或无法验证信息的倾向,但以一种好的方式:识别新分子和蛋白质序列,以支持寻找新的医疗保健治疗方法。 另外,甲骨文子公司 Cerner Enviza 与美国食品药品监督管理局 (FDA) 和 John Snow Labs 合作,应用人工智能工具应对“了解药物对大量人群的影响”的挑战。 甲骨文的人工智能战略是让人工智能渗透到其云应用程序和云基础设施中。

生成式AI用例

生成式人工智能具有加速或完全自动化一系列不同任务的深远潜力。 企业应计划深思熟虑的具体方法,以最大限度地提高其运营效益。 以下是一些具体的用例:

  • 弥合知识差距:凭借其简单的、基于聊天的用户界面,生成式人工智能工具可以回答工人的一般或特定问题,当他们遇到从最简单的查询到复杂操作的任何问题时,为他们指明正确的方向。 例如,销售人员可以询问有关目标客户的见解; 程序员可以学习新的编程语言。
  • 检查错误:生成式人工智能工具可以搜索任何文本中的错误,从非正式电子邮件到专业写作样本。 他们可以做的不仅仅是纠正错误:他们可以解释是什么和原因,来帮助用户学习和改进他们的工作。
  • 改善沟通:生成式人工智能工具可以将文本翻译成不同的语言、调整语气、根据不同的数据集创建独特的消息等等。 营销团队可以使用生成式人工智能工具来制作更具相关性的广告活动,而内部员工可以使用它来搜索以前的通信记录并快速找到相关信息和问题答案,而无需打扰其他员工。 汤普森认为,这种针对员工可能提出的任何问题或想法合成机构性知识的能力将从根本上改变人们在大型组织内的沟通方式,从而促进知识发现。
  • 减轻行政负担:行政工作繁重(例如医疗编码/计费)的企业可以使用生成式人工智能来自动执行复杂的任务,包括适当地归档文件和分析医生的笔记。 这使员工能够专注于更多的实践工作,例如患者护理或客户服务。
  • 扫描医学图像是否存在异常:医疗服务提供者可以使用生成式人工智能扫描医疗记录和图像,以标记值得注意的问题,并向医生提供药物建议,包括与患者病史相关的潜在副作用。
  • 对代码进行故障排除:软件工程师可以使用生成式 AI 模型来更快、更可靠地对代码进行故障排除和微调,而不是逐行梳理。 然后,他们可以要求该工具提供更深入的解释,为未来的编码提供信息并改进他们的流程。

生成式AI的好处

生成式人工智能可以给企业带来的好处主要来自三个总体属性:知识合成、人机协作和速度。 虽然下面提到的许多好处与早期人工智能模型和自动化工具过去所承诺的好处类似,但这三个属性中的一个或多个属性的存在可以帮助企业更快、更容易、更有效地实现这些优势。

借助生成式人工智能,组织可以构建根据自己的机构知识和知识产权 (IP) 进行训练的自定义模型,之后知识工作者可以要求软件使用他们可能与同事使用的相同语言协同完成任务。 这种专门的生成式人工智能模型可以通过以惊人的速度综合整个企业知识库的信息来做出响应。 这种方法不仅减少或消除了为这些任务创建特定程序所需的复杂(通常效率较低且成本较高)软件工程专业知识的需求,而且还可能浮现出先前方法无法实现的想法和联系。

  • 提高生产力:知识工作者可以使用生成式人工智能来减少花在日常任务上的时间,例如对即将进行的项目突然需要的新学科进行自我教育,组织或分类数据,梳理互联网以进行适用的研究, 或起草电子邮件。 通过利用生成式人工智能,更少的员工可以在更短的时间内完成以前需要大型团队或几个小时工作的任务。 例如,一个程序员团队可能会花费数小时研究有缺陷的代码来排除问题所在,但生成式人工智能工具可能能够立即找到错误并报告它们以及建议的修复方案。 由于一些生成式人工智能模型在广泛的知识工作能力方面拥有大致平均或更好的技能,因此与生成式人工智能系统协作可以显着提高其人类合作伙伴的生产力。 例如,初级产品经理也可以至少是一名普通的项目经理,身边有人工智能教练。 所有这些能力将极大地提高知识工作者完成项目的能力。

  • 降低成本:由于其速度,生成式人工智能工具降低了完成流程的成本,如果完成一项任务需要一半的时间,则该任务的成本将是其他情况下的一半。 此外,生成式人工智能可以最大限度地减少错误,消除停机时间,并识别冗余和其他代价高昂的低效率问题。 然而,有一个抵消因素:由于生成人工智能容易产生幻觉,人类监督和质量控制仍然是必要的。 但人类与人工智能的协作预计将比人类单独在更短的时间内完成更多的工作,比单独使用人工智能工具更好、更准确,从而降低成本。 例如,在测试新产品时,生成式人工智能可以帮助创建比旧工具更先进、更详细的模拟。 这最终减少了测试新产品的时间和成本。

  • 提高客户满意度:通过基于生成式人工智能的自助服务和生成式人工智能工具“在客户服务代表耳边窃窃私语”,实时向他们注入知识,客户可以获得卓越且更加个性化的体验。 虽然今天遇到的人工智能客户服务聊天机器人有时会让人感到令人沮丧的局限性,但很容易想象,基于当今 ChatGPT 对话的质量,由公司经过专门训练的生成人工智能模型提供更高质量的客户体验。

  • 更明智的决策:经过专门训练的企业特定生成人工智能模型可以通过场景建模、风险评估和其他复杂的预测分析方法提供详细的见解。 决策者可以利用这些工具,通过个性化的建议和可行的策略,更深入地了解他们的行业和企业在行业中的地位,并通过比人类分析师或旧技术自己生成的更深入的数据和更快的分析来提供信息。

例如,决策者可以结合企业资源规划 (ERP) 系统收集的内部数据和全面的外部市场研究,然后通过专门的生成式AI模型分析,来进行更准确的需求预测,从而在旺季之前更好地计划库存分配。 在这种情况下,更好的分配决策可以最大限度地减少过度购买和缺货,同时最大限度地提高潜在销量。

  • 更快的产品发布:生成式人工智能可以快速生成产品原型和初稿,帮助微调正在进行的工作,并对现有项目进行测试/故障排除,以比以前更快地找到改进之处。

  • 质量控制:企业特定的、专门的生成式人工智能模型可能会找出企业向公众呈现的用户手册、视频和其他内容中的差距和不一致之处。

具体生成式人工智能优势示例

知识合成人机协作速度
提高生产力组织数据、加快研究、产品初稿。对员工进行新学科教育,提出解决问题的新方法。提高知识工作者完成新项目的能力。
降低成本识别冗余和低效率以改进工作流程。通过协作监督最大限度地减少人为错误,减少停机时间。更快地完成任务(如果任务花费一半的时间,则成本也减半)。
提高客户满意度快速组织和检索客户帐户信息以加快问题解决。改进的聊天机器人可以自动执行简单的交互,并在需要人工帮助时向代表提供更好的信息。向客户和服务代表提供实时帐户更新和信息。
更明智的决策通过调解预测分析(例如场景建模和风险评估)来快速获取见解。向决策者提供个性化建议和可行的策略。与人类分析师或旧技术相比,可以从更广泛的数据中生成更快的分析。
更快的产品发布制作原型和“最小可行产品”(MVP)。测试现有项目并排除故障以寻求改进。加快实施调整的速度。

生成式AI的局限性

任何使用生成式人工智能工具进行教育和/或研究的人都可能经历过其最著名的局限性:它们会编造东西。 由于该模型仅预测下一个单词,因此它可以从训练数据中推断出谎言,其权威性与其报告的真相一样高。 这就是人工智能研究人员所说的幻觉,也是当前生成式人工智能工具需要人类合作其实就是人类的监督)的一个关键原因。 企业在实施生成式人工智能时必须注意做好准备并应对这一限制和其他限制。 如果企业设定了不切实际的期望或没有有效地管理技术,其后果可能会损害公司的业绩和声誉。

  • 需要监督:生成式人工智能模型可能会引入虚假或误导性信息,通常具有如此详细和权威的语气,甚至连专家也会被愚弄。 同样,他们的输出可能包含从模型训练的数据集中学到的有偏见或冒犯性的语言。 人类仍然是工作流程的关键部分,以防止这些有缺陷的输出传播并到达客户或影响公司政策。
  • 计算能力和初始投资:生成式人工智能模型需要大量的计算能力来进行训练和操作。 许多公司缺乏必要的资源和专业知识来自行构建和维护这些系统。 这就是为什么许多生成式人工智能开发是使用云基础设施完成的原因之一。
  • 趋同而非分化的潜力不构建自己的专业模型、而是依赖公共生成式人工智能工具的组织可能注定会表现平庸。 通常,他们会发现自己的结论与其他人的结论相同,因为它们基于相同的训练数据。 除非这些公司在工作中融入人类创新,否则他们可能会发现自己有效地适应了当前的最佳实践,但很难找到竞争优势。
  • 来自员工和客户的阻力:员工,尤其是具有根深蒂固的协议和方法的长期员工,可能很难适应生成式人工智能,从而导致他们在适应过程中生产力下降。 同样,员工可能会因为担心失去工作而抵制这项技术。 经理和企业领导者必须缓解这些担忧,并对技术将如何改变(或不改变)业务结构保持开放和透明。

生成式AI的风险和担忧

生成式人工智能在风险谱的两边都引起了极端的反应。 一些团体担心这将导致人类灭绝,而另一些团体则坚持认为这将拯救世界。 这些极端情况超出了本文的范围。 然而,实施人工智能技术的企业领导者必须了解以下一些重要的风险和担忧,以便他们能够采取措施减轻任何潜在的负面后果。

  • 信任和可靠性:生成式人工智能模型会提出不准确的主张,有时会产生完全捏造的信息。 同样,许多模型都是使用旧数据进行训练的,通常只查看特定日期之前发布的信息,因此适合去年市场的内容可能不再相关或有用。 例如,寻求改善供应链运营的企业可能会发现他们的模型建议已经过时,并且与不断变化的全球经济无关。 用户在采取行动之前必须验证所有声明,以确保准确性和相关性。

  • 隐私/知识产权:生成式人工智能模型通常会继续从作为提示的一部分提供的信息输入中学习。 企业,尤其是那些从客户那里收集敏感个人信息(例如医疗实践)的企业,必须注意不要泄露受保护的知识产权或机密数据。 如果模型访问此信息,可能会增加暴露的可能性。

  • 强大的社会工程:威胁行为者已经在使用生成式人工智能来帮助他们更好地个性化社会工程和其他网络攻击,使它们看起来更真实。
    Duolingo 人工智能和安全工程师 Baig 表示:“现在已经很难区分你是在与机器人还是人类在线交谈。” “对于想要赚钱的犯罪分子来说,制作大量愚弄人们的内容变得更加容易。”

  • 输出质量和原创性下降:生成式人工智能可能使构建产品和内容变得更容易、更快,但并不能保证更高质量的结果。 在没有大量人类协作的情况下依赖人工智能模型可能会导致产品变得标准化且缺乏创造力

  • 偏见:如果生成式人工智能模型接受有偏见的数据训练,从观点差距到有害和偏见的内容,这些偏见将反映在其输出中。 例如,如果一家企业过去只雇用过一种类型的员工,则该模型可能会交叉参考新申请人与“理想”雇员,并淘汰合格的候选人,因为他们不适合该模式,即使该组织打算放弃该模式 。

  • 影子人工智能:员工在未经组织官方批准或不知情的情况下使用生成式人工智能可能会导致企业无意中发布不正确的信息或侵犯其他组织的版权。

  • 模型崩溃:人工智能研究人员发现了一种称为模型崩溃的现象,随着时间的推移,这种现象可能会导致生成式人工智能模型的用处降低。 从本质上讲,随着人工智能生成的内容激增,基于合成数据训练的模型(不可避免地包含错误)最终将“忘记”它们最初训练的人类生成数据的特征。 随着互联网上人工智能内容的增多,这种担忧可能会达到临界点,从而形成一个降低模型质量的反馈循环(反噬,看下面漫画)。
    在这里插入图片描述

  • 人工智能监管:由于生成式人工智能很新,因此没有太多适用的监管。 尽管如此,世界各国政府仍在研究如何对其进行监管。 中国等一些国家已经就如何训练模型以及允许模型生产什么提出了监管措施。 随着越来越多的国家实施法规,企业,尤其是跨国公司,需要监控新的和不断变化的法律,以确保合规性并避免因滥用技术而受到罚款或刑事指控。

伦理与生成人AI

十多年前大数据分析的兴起引发了新的道德问题和辩论,因为新兴工具可以推断出他们没有也不希望透露的私人或敏感信息。 企业应如何处理其掌握此类信息的能力?

鉴于其增强数据分析的潜力,生成式人工智能正在引发新的道德问题并重新出现旧的问题。

  • 生成式人工智能将如何影响工人? 生成式人工智能已经让许多工人对其长期就业前景感到不安——这是理所当然的。 虽然历史表明,技术进步总是会带来比技术进步更多、更高价值的工作岗位,但人工智能可能会淘汰的角色是为当今的人们支付账单。
  • 我们如何消除潜在的偏见? 我们知道所有人工智能模型都有可能产生有偏差的结果。 组织必须从企业风险和道德角度主动选择如何应对这一挑战。
  • 不良行为者如何利用 生成式AI 模型对公众造成伤害和破坏? 不幸的是,生成人工智能的无数潜在用途包括犯罪和有害行为,特别是当生成模型变得更容易为公众所接受时。 使用某人的声音和肖像的 “深度伪造” 视频、增强网络攻击的黑客工具、广泛传播的错误信息以及社会工程活动只是恶意行为者利用生成式人工智能的一些潜在方式。 目前,很多车型都有防护装置,但这些护栏并不完美。 实施自己的模型的企业必须了解其系统的功能,并采取措施确保其负责任的使用。
  • 人工智能生成的作品归谁所有? 即使企业根据自己的数据微调模型,生成式人工智能模型也会根据大量外部数据进行训练。 因此,模型的输出可能包含其他组织工作的元素,从而导致潜在的道德和法律问题,例如剽窃和版权侵权。 对于图像生成人工智能模型尤其如此; 来自各个创意领域的艺术家正在探索如何防止他们的作品被纳入这些计划。 随着时间的推移,监管机构可能会制定新的规则,因此任何使用生成式人工智能的人都应该在将内容发布为自己的内容之前考虑内容的来源以及将如何使用它。

生成式AI示例

从美国军方到可口可乐,各种规模和行业的企业都在大力尝试生成式人工智能。 以下是一小部分示例,展示了该技术的广泛潜力和快速采用。

  • Snapchat 背后的公司 Snap Inc. 推出了一款名为“My AI”的聊天机器人,由 OpenAI 的 GPT 技术版本提供支持。 My AI 专为适应 Snapchat 的语气和风格而定制,友好且风度翩翩。 用户可以使用头像、壁纸和名称自定义其外观,并可以使用它进行一对一或多个用户之间的聊天,模拟 Snapchat 用户与朋友交流的典型方式。 用户可以请求个人建议,或者就食物、爱好或音乐等话题进行随意的对话——机器人甚至可以讲笑话。 Snapchat 将 My AI 定位为帮助用户探索应用程序的功能,例如增强现实镜头,并帮助用户获取他们通常不会向 Snapchat 寻求的信息,例如在当地地图上推荐去的地方。

  • 彭博社推出了 BloombergGPT,这是一个聊天机器人,大约一半使用有关世界的一般数据进行训练,一半使用彭博专有数据或经过清理的财务数据进行训练。 它可以执行简单的任务,例如撰写好的文章标题,也可以执行一些适当的技巧,例如将简单的英语提示转换为公司数据终端所需的彭博查询语言,而这是许多金融行业公司的必备条件。
    甲骨文与人工智能开发商 Cohere 合作,帮助企业构建根据私人企业数据进行微调的内部模型,此举旨在推广公司特定的专门生成人工智能工具的使用。
    Oracle 的埃里森在 2023 年 6 月的财报电话会议上对财务分析师表示:“Cohere 和 Oracle 正在共同努力,让企业客户非常非常轻松地训练自己的专业大型语言模型,同时保护其训练数据的隐私。” 甲骨文计划将生成式人工智能服务嵌入到业务平台中,以提高整个企业现有流程的生产力和效率,从而绕过许多公司从头开始构建和训练自己的模型的需要。 为此,该公司最近还宣布将生成式人工智能功能纳入其人力资源软件 Oracle Fusion Cloud 人力资本管理 (HCM) 中。

此外:

  • 可口可乐正在使用文本和图像生成器来个性化广告文案并打造高度定制的客户体验。
  • 美国运通长期以来一直处于信用卡欺诈检测人工智能应用的前沿,其子公司美国运通数字实验室负责开发消费者和 B2B 功能。
  • 五角大楼的数字和人工智能办公室正在试验五种生成人工智能模型,向它们提供分类数据并对其进行测试,以探索如何利用它们提出人类军事领导人从未考虑过的创造性选择。
  • Duolingo 正在使用 ChatGPT 支持的机器人来帮助其外语学习者。 它模仿用户与人类导师互动的方式,深入解释了他们在练习测试中的答案是对还是错的原因。
  • Slack 发布了一款聊天机器人,旨在帮助客户的工作人员从每个客户 Slack 渠道中的机构知识库中提取见解和建议。

生成式AI工具

ChatGPT 是一款风靡一时的工具,但每种模式都有多种生成式 AI 工具可用。 例如,仅用于写作的有 Jasper、Lex、AI-Writer、Writer 等等。 在图像生成方面,Midjourney、Stable Diffusion 和 Dall-E 似乎是当今最受欢迎的。

数十种音乐生成器包括 AIVA、Soundful、Boomy、Amper、Dadabots 和 MuseNet。 尽管众所周知,软件程序员与 ChatGPT 合作,但还有许多专门的代码生成工具,包括 Codex、codeStarter、Tabnine、PolyCoder、Cogram 和 CodeT5。

生成式AI的历史

也许令人惊讶的是,今天使用的生成式人工智能模型的第一步出现在 1943 年,同年,第一台可编程电子计算机 Colossus 诞生,随后英国在二战期间使用它来解码加密消息,并验证了其能力。 人工智能迈出的这第一步来自伊利诺伊大学医学院精神病学家兼教授沃伦·麦卡洛克(Warren McCulloch)和自学成才的计算神经科学家沃尔特·皮茨(Walter Pitts)撰写的研究论文《神经活动中固有的思想的逻辑演算》。

皮茨是一位数学神童,15 岁时离家出走,当他遇到麦卡洛克时,他无家可归,麦卡洛克收留了皮茨与家人一起生活。 皮茨唯一的学位是芝加哥大学授予的文科副学士学位,该大学发表了一篇开创性的论文,该论文建立了人工神经元“决定”输出 1 或 0 的基本数学原理。

第二步向北和向东转移到纽约州布法罗,康奈尔航空实验室的研究心理学家弗兰克·罗森布拉特 (Frank Rosenblatt) 来到这里。 1957 年 7 月,作为康奈尔大学 PARA(感知和识别自动机)项目的一部分,罗森布拉特在美国海军部海军研究办公室的资助下开展工作,以 McCulloch 和 Pitts 的数学为基础,开发了感知器,这是一种神经网络, 输入层和输出层之间的单个“隐藏”层。 1958 年 7 月,在建造 Mark I 感知器(如今位于史密森学会)之前,罗森布拉特和海军在 IBM 704 大型计算机上对其进行了模拟,并进行了公开演示。但感知器是如此简单的神经网络,因此引起了麻省理工学院技术计算机科学家,同时也是麻省理工学院人工智能实验室的联合创始人马文·明斯基 (Marvin Minsky)的批评。 据报道,明斯基和罗森布拉特在公共论坛上讨论了感知器的长期前景,导致人工智能社区从 20 世纪 60 年代到 1980 年代基本上放弃了神经网络研究。

这一时期被称为“人工智能冬天”。

得益于多位研究人员的贡献,神经网络研究领域在 20 世纪 80 年代逐渐复苏,其中最著名的是 Paul Werbos,他最初的工作重新发现了感知器; 杰弗里·辛顿; 约书亚·本吉奥; 和扬·乐昆。 他们的联合工作证明了大型多层神经网络的可行性,并展示了此类网络如何通过反向传播算法进行信用分配,从正确和错误的答案中学习。 这就是 RNN 和 CNN 出现的时候。 但这些早期神经网络的局限性,加上由于这些限制和当时的计算能力状态而无法满足的过分夸大的早期期望,导致了 20 世纪 90 年代和 2000 年代初的第二个人工智能冬天。

不过,这一次,许多神经网络研究人员坚持了下来,包括 Hinton、Bengio 和 LeCun。 这三人有时被称为“人工智能教父”,因其 1980 年代的工作、随后的坚持以及持续的贡献而分享了 2018 年图灵奖。 到 2010 年代中期,新的、多样化的神经网络变体迅速出现,如生成 AI 模型部分所述。

生成式AI的未来

生成式人工智能对企业和人们的工作方式有何影响还有待观察。 但有一点是明确的:大量投资正在涌入跨越人类努力的多个维度的生成人工智能。 风险投资家、老牌企业以及几乎所有企业都在以极快的速度投资于生成型人工智能初创公司。 大语言模型的普遍“魔力”是一种不可思议的能力,可以调解人类与大数据的互动,通过简单、清晰和惊人的速度解释信息来帮助人们理解信息。 这表明生成式人工智能将嵌入到众多现有应用程序中,并引发第二波新应用程序的发明。

例如,Gartner预测,到2024年,40%的企业应用程序将嵌入对话式人工智能,到2025年,30%的企业将拥有人工智能增强的开发和测试策略,到2026年,将有超过1亿员工与“机器人同事”协作 。

当然,生成式人工智能的风险和局限性可能会让这辆压路机脱轨。 微调生成模型以了解企业独特之处的细微差别可能太困难,运行这种计算密集型模型可能成本太高,并且无意中暴露商业秘密可能会吓跑公司。

或者这一切都可能发生,但速度比许多人现在预期的要慢。 提醒一下,互联网的承诺最终实现了。 但这比第一代爱好者预期的时间要长十年,在此期间建立或发明了必要的基础设施,并且人们调整了自己的行为以适应新媒体的可能性。 从很多方面来说,生成式人工智能是另一种新媒介。

有影响力的人正在广泛思考商业生成人工智能的未来。

“这可能意味着我们未来会以不同的方式创建公司,”风险投资家肖恩·阿米拉蒂 (Sean Ammirati) 说道,他也是卡内基梅隆大学泰珀商学院杰出的创业服务教授,也是卡耐基梅隆大学企业创业实验室的联合创始人。 就像互联网兴起后“数字原生”公司占据优势一样,Ammirati 预计未来从头开始建立的基于人工智能驱动的自动化的公司将能够占据领先地位。

他说:“这些公司将优先采用自动化,因此他们不必重新学习如何停止手动执行本应以自动化方式执行的操作。” “你最终可能会得到一家完全不同的公司。”

通过 Oracle 轻松采用生成式 AI

甲骨文不仅在人工智能功能方面拥有悠久的历史,并将其融入到其产品中,而且还处于生成式人工智能开发和活动的前沿。 Oracle 云基础设施由领先的生成式 AI 公司使用。 这种下一代云可以为企业提供完美的平台,以构建和部署特定于其组织和各个业务线的专用生成人工智能模型。正如 Oracle 的 Ellison 所解释的那样,“Oracle 的所有云数据中心都拥有高带宽、低延迟的 RDMA(远程直接内存访问)网络,该网络针对构建用于训练生成式语言模型 的大规模 GPU 集群进行了完美优化。。 在我们的第二代云中运行生成式 AI 工作负载所带来的极高性能和相关成本节省,使 Oracle 成为尖端 AI 开发公司的第一选择。”

Oracle 与 Cohere 的合作推出了一套新的生成式 AI 云服务产品。 埃里森说:“这项新服务保护了我们企业客户训练数据的隐私,使这些客户能够安全地使用自己的私人数据来训练他们自己的私人专业大语言模型。”

生成式人工智能的故事始于 80 年前一名离家出走的青少年的数学,并随着去年年底 ChatGPT 的发布而引起轰动。 随着各种规模和行业的企业对其功能进行试验和投资,生成人工智能的创新正在迅速加速。 但除了能够极大改善工作和生活的能力之外,生成式人工智能也带来了巨大的风险,从失业到(如果你相信末日论者的话)人类灭绝的可能性。 我们可以肯定的是,精灵已经从瓶子里出来了,而且不会再回到瓶子里了。

生成式AI常见问题解答

什么是生成式人工智能技术?

生成式人工智能技术建立在神经网络软件架构之上,模仿人类大脑的工作方式。 这些神经网络的训练方法是在相对较小的样本中输入大量数据,然后要求人工智能做出简单的预测,例如序列中的下一个单词或句子序列的正确顺序。 神经网络会因为正确和错误的答案而受到赞扬或指责,因此它会从这个过程中学习,直到能够做出好的预测。 最终,该技术利用其训练数据和学习以类似人类的方式响应问题和其他提示。

生成式人工智能的例子是什么?

当今生成式人工智能最著名的例子是 ChatGPT,它能够像人类一样进行对话并就广泛的主题进行写作。 其他示例包括创建图像的 Midjourney 和 Dall-E,以及许多可以生成文本、图像、视频和声音的其他工具。

生成式人工智能和人工智能有什么区别?

值得注意的是,生成式人工智能与传统人工智能并没有本质上的不同。 它们存在于光谱上的不同点。 传统的人工智能系统通常执行特定任务,例如检测信用卡欺诈。 生成式人工智能通常范围更广,可以创造新内容。 部分原因是生成式人工智能工具是在比传统人工智能更大、更多样化的数据集上进行训练的。 此外,传统人工智能通常使用监督学习技术进行训练,而生成式人工智能则使用无监督学习技术进行训练。

生成式人工智能有什么危险?

社会上正在就生成人工智能可能存在的风险展开一场重大辩论。 争论双方的极端分子都表示,这项技术可能最终导致人类灭绝,一方面,或者拯救世界。 更有可能的是,人工智能将导致许多现有工作岗位的消失。 企业应该关注生成式人工智能将如何推动工作流程和工作角色的变化,以及它无意中暴露私人或敏感信息或侵犯版权的可能性。

生成式人工智能有什么用处?

生成式人工智能可以与人类合作者合作很好地利用,例如,集思广益新想法和对工人进行相关学科的教育。 它也是帮助人们更快地分析非结构化数据的一个很好的工具。 更一般地说,它可以通过提高生产力、降低成本、提高客户满意度、为决策提供更好的信息以及加快产品开发的步伐来使企业受益。

生成式人工智能不能做什么?

生成式人工智能不可能拥有以前未在其训练数据中表达过或至少从未从该数据中推断出的真正的新想法。 它也不应该被单独留下。 生成式人工智能需要人类的监督,并且只有在和人类与人工智能的协作中才能发挥最佳效果

哪些行业使用生成式人工智能?

由于其广泛性,生成式人工智能可能在几乎每个行业中都有用。

生成式人工智能将如何影响未来的工作?**

生成式人工智能可能会对知识工作、人类共同工作和/或做出业务决策的活动产生重大影响。 至少,知识工作者的角色需要适应与生成式人工智能工具的合作,一些工作岗位将被取消。 然而,历史表明,像生成式人工智能所带来的技术变革所创造的就业机会总是多于它所摧毁的就业机会。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值