自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 资源 (12)
  • 论坛 (1)
  • 问答 (1)

转载 Openwrt编译进阶-修改密码、路由连接数、时区及主题

原文地址:http://blog.163.com/l1_jun/blog/static/14386388201471112948506/1)修改密码默认情况下root是没有密码的,需设定密码才能开启ssh。修改shadow文件,位于package/base-files/files/etc1root:$1$wEehtjxj$YBu4

2014-10-20 10:29:02 3253

转载 在命令行中管理 Wifi 连接

在命令行中管理 Wifi 连接无论何时要安装一款新的 Linux 发行系统,一般的建议都是让您通过有线连接来接到互联网的。这主要的原因有两条:第一,您的无线网卡也许安装的驱动不正确而不能用;第二,如果您是从命令行中来安装系统的,管理 WiFi 就非常可怕。我总是试图避免在命令行中处理 WiFi 。但 Linux 的世界,应具有无所畏惧的精神。如果您不知道怎样操作,您需要继续往下来学习之,这

2014-10-17 09:06:56 865

基于spi-flash的fatfs配置

由于产品需要存储大量数据,stm32单片机存储有限需要使用外部flash辅助存储。考虑各方面原因最后选用了一款spi-flash型号为w25x16,spi总线操作,拥有2M的存储单元。为了方便,我们想到了使用文件系统fatfs。此文档记录了配置流程,为以后做参考。

2013-12-18

elecfans.com-Protues 7.5 SP3破解汉化中文版.zip

Protues软件是英国Labcenter electronics公司出版的EDA工具软件。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前最好的仿真单片机及外围器件的工具。虽然目前国内推广刚起步,但已受到单片机爱好者、从事单片机教学的教师、致力于单片机开发应用的科技工作者的青睐。Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。是目前世界上唯一将电路仿真软件、PCB设计软件和虚拟模型仿真软件三合一的设计平台,其处理器模型支持8051、HC11、PIC10/12/16/18/24/30/DsPIC33、AVR、ARM、8086和MSP430等,2010年即将增加Cortex和DSP系列处理器,并持续增加其他系列处理器模型。在编译方面,它也支持IAR、Keil和MPLAB等多种编译器。

2011-06-12

protues7.5教程与keil联调.zip

目录 第一章概述........................................................................................... 2 一、进入Proteus ISIS ..........................................................................................................................2 二、工作界面..................................................................................... 3 三、基本操作..................................................................................... 3 图形编辑窗口.......................................................................... 3 预览窗口(The Overview Window) ............................................ 4 对象选择器窗口...................................................................... 5 图形编辑的基本操作............................................................... 5 参考1 ....................................................................................................................................10 参考2 作原理图仿真调试...................................................... 12 四、实例一....................................................................................... 17 电路图的绘制............................................................................. 17 KeilC 与Proteus 连接调试................................................................. 22 五、实例二....................................................................................... 25 使用元件工具箱..................................................................... 31 使用状态信息条..................................................................... 31 使用对话框............................................................................. 31 使用仿真信息窗口.................................................................. 31 关闭Proteus ISIS ..................................................................................................................31 四、菜单命令简述............................................................................ 31 主窗口菜单............................................................................. 31 表格输出窗口(Table)菜单.......................................................... 33 方格输出窗口(Grid)菜单........................................................... 34 Smith 圆图输出窗口(Smith)菜单.................................................. 34 直方图输出窗口(Histogram)菜单.......................................................................34

2011-06-12

c语言课程设计道路交通灯控制系统.zip

在一个有多条分支的多叉路口,有些方向是双向通行,有些方向是单向通行,每个方向的通行时间根据不同时间段自动调节,请设计一个交通信号控制系统。(C和E是单行道)。该控制系统可以根据不同路口情况,配置合适的交通信号灯颜色及控制通行时间。 实现功能 在一个有多条分支的多叉路口,A、B、D是双向通行,C、E是单向通行,每个方向的通行时间根据不同时间段自动调节。请设计一个交通信号控制系统。该控制系统可以根据不同路口情况,配置合适的交通信号灯颜色及控制通行时间。 思路分解 道路遵循右行规则 找到可以行驶的路线(考虑C、E的单向因素) AB、AC、AD BA、BC、BD DA、DB、DC EA、EB、EC、ED 思路分解 基于以上判断出的可以行驶的路线,根据车辆必须右行和同一通行时间段内路线之间不能交叉的原则判断哪些路线不能同时行驶。结果包括以下: (AB BC) (AB BD) (AB DA) (AB EA) (AC DA) (AC BD) (AC DB) (AC EA) (AC EB) (AD EA) (AD EB) (AD EC) (BC EB) (BC DB) (BD DA) (BD EB) (BD EC) (DA EB) (DA EC) (DB EC) 思路分解  把可以同时行驶且不发生碰撞的路线用同一种颜色的交通灯指示  该控制系统需要用多少种颜色的交通灯分配给这些行驶路线? 交通灯颜色越少表示该控制系统的管理效率越高 解决方案  借助于“图”。图中一个顶点表示一条行驶路线,行驶路线相互矛盾用顶点之间的连线(即“边”)来表示。  交通灯控制问题就变等价为:对图的顶点的染色问题,要求对图上的每个顶点染上一种颜色,且有边相连的两个顶点不能染相同的颜色,且总的颜色种类尽可能的少。  或者,如果把图上的一个顶点理解为一个国家,顶点之间的连线表示两个国家有共同的边界,相邻的国家不能涂相同的颜色,则以上交通灯控制问题又能转化为著名的地图着色问题。 解决方案  考虑使用贪心算法  算法主要思想 1. 用一种颜色给尽可能多的顶点着色 (1) 选择某未着色的顶点并用该新颜色上色 (2) 扫描未着色的其他所有顶点,逐个考察它们是否有边与已用该颜色着色的顶点相连,若没有边相连就用该颜色上色。 2. 换一种颜色重复步骤1,直到所有顶点全部着色为止  其中一种可能染色结果,圆圈中的数字标识该路径所选用的交通灯颜色,即:蓝色为1,红色为2,绿色为3,黄色为4。该算法还可能得到其他的次优解。 实现要求  选用适当的数据结构存储上面的图的信息  程序运行后的输出内容,请参考以下格式(以上图为例): 颜色1的信号灯亮时,以下方向通行: AàB BàA AàC AàD DàC EàD 颜色2的信号灯亮时,以下方向通行: BàC BàD EàA 颜色3的信号灯亮时,以下方向通行: DàA DàB 颜色4的信号灯亮时,以下方向通行: EàB EàC 实验步骤 - 建立数据的结构; - 设计子函数; - 利用main函数调用各子函数; - 准备测试数据; - 调试程序,分析运行结果。

2011-06-12

c语言数据结构字符串模式匹配算法.zip

KMP字符串模式匹配通俗点说就是一种在一个字符串中定位另一个串的高效算法。简单匹配算法的时间复杂度为O(m*n);KMP匹配算法。可以证明它的时间复杂度为O(m+n).。 一.简单匹配算法 先来看一个简单匹配算法的函数: int Index_BF ( char S [ ], char T [ ], int pos ) { /* 若串 S 中从第pos(S 的下标0≤pos<StrLength(S))个字符 起存在和串 T 相同的子串,则称匹配成功,返回第一个 这样的子串在串 S 中的下标,否则返回 -1 */ int i = pos, j = 0; while ( S[i+j] != '\0'&& T[j] != '\0') if ( S[i+j] == T[j] ) j ++; // 继续比较后一字符 else { i ++; j = 0; // 重新开始新的一轮匹配 } if ( T[j] == '\0') return i; // 匹配成功 返回下标 else return -1; // 串S中(第pos个字符起)不存在和串T相同的子串 } // Index_BF 此算法的思想是直截了当的:将主串S中某个位置i起始的子串和模式串T相比较。即从 j=0 起比较 S[i+j] 与 T[j],若相等,则在主串 S 中存在以 i 为起始位置匹配成功的可能性,继续往后比较( j逐步增1 ),直至与T串中最后一个字符相等为止,否则改从S串的下一个字符起重新开始进行下一轮的"匹配",即将串T向后滑动一位,即 i 增1,而 j 退回至0,重新开始新一轮的匹配。 例如:在串S=”abcabcabdabba”中查找T=” abcabd”(我们可以假设从下标0开始):先是比较S[0]和T[0]是否相等,然后比较S[1] 和T[1]是否相等…我们发现一直比较到S[5] 和T[5]才不等。如图: 当这样一个失配发生时,T下标必须回溯到开始,S下标回溯的长度与T相同,然后S下标增1,然后再次比较。如图: 这次立刻发生了失配,T下标又回溯到开始,S下标增1,然后再次比较。如图: 这次立刻发生了失配,T下标又回溯到开始,S下标增1,然后再次比较。如图: 又一次发生了失配,所以T下标又回溯到开始,S下标增1,然后再次比较。这次T中的所有字符都和S中相应的字符匹配了。函数返回T在S中的起始下标3。如图: 二. KMP匹配算法 还是相同的例子,在S=”abcabcabdabba”中查找T=”abcabd”,如果使用KMP匹配算法,当第一次搜索到S[5] 和T[5]不等后,S下标不是回溯到1,T下标也不是回溯到开始,而是根据T中T[5]==’d’的模式函数值(next[5]=2,为什么?后面讲),直接比较S[5] 和T[2]是否相等,因为相等,S和T的下标同时增加;因为又相等,S和T的下标又同时增加。。。最终在S中找到了T。如图: KMP匹配算法和简单匹配算法效率比较,一个极端的例子是: 在S=“AAAAAA…AAB“(100个A)中查找T=”AAAAAAAAAB”, 简单匹配算法每次都是比较到T的结尾,发现字符不同,然后T的下标回溯到开始,S的下标也要回溯相同长度后增1,继续比较。如果使用KMP匹配算法,就不必回溯. 对于一般文稿中串的匹配,简单匹配算法的时间复杂度可降为O (m+n),因此在多数的实际应用场合下被应用。 KMP算法的核心思想是利用已经得到的部分匹配信息来进行后面的匹配过程。看前面的例子。为什么T[5]==’d’的模式函数值等于2(next[5]=2),其实这个2表示T[5]==’d’的前面有2个字符和开始的两个字符相同,且T[5]==’d’不等于开始的两个字符之后的第三个字符(T[2]=’c’).如图: 也就是说,如果开始的两个字符之后的第三个字符也为’d’,那么,尽管T[5]==’d’的前面有2个字符和开始的两个字符相同,T[5]==’d’的模式函数值也不为2,而是为0。 前面我说:在S=”abcabcabdabba”中查找T=”abcabd”,如果使用KMP匹配算法,当第一次搜索到S[5] 和T[5]不等后,S下标不是回溯到1,T下标也不是回溯到开始,而是根据T中T[5]==’d’的模式函数值,直接比较S[5] 和T[2]是否相等。。。为什么可以这样? 刚才我又说:“(next[5]=2),其实这个2表示T[5]==’d’的前面有2个字符和开始的两个字符相同”。请看图 :因为,S[4] ==T[4],S[3] ==T[3],根据next[5]=2,有T[3]==T[0],T[4] ==T[1],所以S[3]==T[0],S[4] ==T[1](两对相当于间接比较过了),因此,接下来比较S[5] 和T[2]是否相等。。。 有人可能会问:S[3]和T[0],S[4] 和T[1]是根据next[5]=2间接比较相等,那S[1]和T[0],S[2] 和T[0]之间又是怎么跳过,可以不比较呢?因为S[0]=T[0],S[1]=T[1],S[2]=T[2],而T[0] != T[1], T[1] != T[2],==> S[0] != S[1],S[1] != S[2],所以S[1] != T[0],S[2] != T[0]. 还是从理论上间接比较了。 有人疑问又来了,你分析的是不是特殊轻况啊。 假设S不变,在S中搜索T=“abaabd”呢?答:这种情况,当比较到S[2]和T[2]时,发现不等,就去看next[2]的值,next[2]=-1,意思是S[2]已经和T[0] 间接比较过了,不相等,接下来去比较S[3]和T[0]吧。 假设S不变,在S中搜索T=“abbabd”呢?答:这种情况当比较到S[2]和T[2]时,发现不等,就去看next[2]的值,next[2]=0,意思是S[2]已经和T[2]比较过了,不相等,接下来去比较S[2]和T[0]吧。 假设S=”abaabcabdabba”在S中搜索T=“abaabd”呢?答:这种情况当比较到S[5]和T[5]时,发现不等,就去看next[5]的值,next[5]=2,意思是前面的比较过了,其中,S[5]的前面有两个字符和T的开始两个相等,接下来去比较S[5]和T[2]吧。 总之,有了串的next值,一切搞定。那么,怎么求串的模式函数值next[n]呢?(本文中next值、模式函数值、模式值是一个意思。) 三. 怎么求串的模式值next[n] 定义: (1)next[0]= -1 意义:任何串的第一个字符的模式值规定为-1。 (2)next[j]= -1 意义:模式串T中下标为j的字符,如果与首字符 相同,且j的前面的1—k个字符与开头的1—k 个字符不等(或者相等但T[k]==T[j])(1≤k<j)。 如:T=”abCabCad” 则 next[6]=-1,因T[3]=T[6] (3)next[j]=k 意义:模式串T中下标为j的字符,如果j的前面k个 字符与开头的k个字符相等,且T[j] != T[k] (1≤k<j)。 即T[0]T[1]T[2]。。。T[k-1]== T[j-k]T[j-k+1]T[j-k+2]…T[j-1] 且T[j] != T[k].(1≤k<j); (4) next[j]=0 意义:除(1)(2)(3)的其他情况。 举例: 01)求T=“abcac”的模式函数的值。 next[0]= -1 根据(1) next[1]=0 根据 (4) 因(3)有1<=k<j;不能说,j=1,T[j-1]==T[0] next[2]=0 根据 (4) 因(3)有1<=k<j;(T[0]=a)!=(T[1]=b) next[3]= -1 根据 (2) next[4]=1 根据 (3) T[0]=T[3] 且 T[1]=T[4] 即 下标 0 1 2 3 4 T a b c a c next -1 0 0 -1 1 若T=“abcab”将是这样: 下标 0 1 2 3 4 T a b c a b next -1 0 0 -1 0 为什么T[0]==T[3],还会有next[4]=0呢, 因为T[1]==T[4], 根据 (3)” 且T[j] != T[k]”被划入(4)。 02)来个复杂点的,求T=”ababcaabc” 的模式函数的值。 next[0]= -1 根据(1) next[1]=0 根据(4) next[2]=-1 根据 (2) next[3]=0 根据 (3) 虽T[0]=T[2] 但T[1]=T[3] 被划入(4) next[4]=2 根据 (3) T[0]T[1]=T[2]T[3] 且T[2] !=T[4] next[5]=-1 根据 (2) next[6]=1 根据 (3) T[0]=T[5] 且T[1]!=T[6] next[7]=0 根据 (3) 虽T[0]=T[6] 但T[1]=T[7] 被划入(4) next[8]=2 根据 (3) T[0]T[1]=T[6]T[7] 且T[2] !=T[8] 即 下标 0 1 2 3 4 5 6 7 8 T a b a b c a a b c next -1 0 -1 0 2 -1 1 0 2 只要理解了next[3]=0,而不是=1,next[6]=1,而不是= -1,next[8]=2,而不是= 0,其他的好象都容易理解。 03) 来个特殊的,求 T=”abCabCad” 的模式函数的值。 下标 0 1 2 3 4 5 6 7 T a b C a b C a d next -1 0 0 -1 0 0 -1 4 next[5]= 0 根据 (3) 虽T[0]T[1]=T[3]T[4],但T[2]==T[5] next[6]= -1 根据 (2) 虽前面有abC=abC,但T[3]==T[6] next[7]=4 根据 (3) 前面有abCa=abCa,且 T[4]!=T[7] 若T[4]==T[7],即T=” adCadCad”,那么将是这样:next[7]=0, 而不是= 4,因为T[4]==T[7]. 下标 0 1 2 3 4 5 6 7 T a d C a d C a d next -1 0 0 -1 0 0 -1 0 如果你觉得有点懂了,那么 练习:求T=”AAAAAAAAAAB” 的模式函数值,并用后面的求模式函数值函数验证。 意义: next 函数值究竟是什么含义,前面说过一些,这里总结。 设在字符串S中查找模式串T,若S[m]!=T[n],那么,取T[n]的模式函数值next[n], 1. next[n]= -1 表示S[m]和T[0]间接比较过了,不相等,下一次比较 S[m+1] 和T[0] 2. next[n]=0 表示比较过程中产生了不相等,下一次比较 S[m] 和T[0]。 3. next[n]= k >0 但k<n, 表示,S[m]的前k个字符与T中的开始k个字符已经间接比较相等了,下一次比较S[m]和T[k]相等吗? 4. 其他值,不可能。 四. 求串T的模式值next[n]的函数 说了这么多,是不是觉得求串T的模式值next[n]很复杂呢?要叫我写个函数出来,目前来说,我宁愿去登天。好在有现成的函数,当初发明KMP算法,写出这个函数的先辈,令我佩服得六体投地。我等后生小子,理解起来,都要反复琢磨。下面是这个函数: void get_nextval(const char *T, int next[]) { // 求模式串T的next函数值并存入数组 next。 int j = 0, k = -1; next[0] = -1; while ( T[j/*+1*/] != '\0' ) { if (k == -1 || T[j] == T[k]) { ++j; ++k; if (T[j]!=T[k]) next[j] = k; else next[j] = next[k]; }// if else k = next[k]; }// while ////这里是我加的显示部分 // for(int i=0;i<j;i++) //{ // cout<<next[i]; //} //cout<<endl; }// get_nextval  另一种写法,也差不多。 void getNext(const char* pattern,int next[]) { next[0]= -1; int k=-1,j=0; while(pattern[j] != '\0') { if(k!= -1 && pattern[k]!= pattern[j] ) k=next[k]; ++j;++k; if(pattern[k]== pattern[j]) next[j]=next[k]; else next[j]=k; } ////这里是我加的显示部分 // for(int i=0;i<j;i++) //{ // cout<<next[i]; //} //cout<<endl; } 下面是KMP模式匹配程序,各位可以用他验证。记得加入上面的函数 #include <iostream.h> #include <string.h> int KMP(const char *Text,const char* Pattern) //const 表示函数内部不会改变这个参数的值。 { if( !Text||!Pattern|| Pattern[0]=='\0' || Text[0]=='\0' )// return -1;//空指针或空串,返回-1。 int len=0; const char * c=Pattern; while(*c++!='\0')//移动指针比移动下标快。 { ++len;//字符串长度。 } int *next=new int[len+1]; get_nextval(Pattern,next);//求Pattern的next函数值 int index=0,i=0,j=0; while(Text[i]!='\0' && Pattern[j]!='\0' ) { if(Text[i]== Pattern[j]) { ++i;// 继续比较后继字符 ++j; } else { index += j-next[j]; if(next[j]!=-1) j=next[j];// 模式串向右移动 else { j=0; ++i; } } }//while delete []next; if(Pattern[j]=='\0') return index;// 匹配成功 else return -1; } int main()//abCabCad { char* text="bababCabCadcaabcaababcbaaaabaaacababcaabc"; char*pattern="adCadCad"; //getNext(pattern,n); //get_nextval(pattern,n); cout<<KMP(text,pattern)<<endl; return 0; } 五.其他表示模式值的方法 上面那种串的模式值表示方法是最优秀的表示方法,从串的模式值我们可以得到很多信息,以下称为第一种表示方法。第二种表示方法,虽然也定义next[0]= -1,但后面绝不会出现-1,除了next[0],其他模式值next[j]=k(0≤k<j)的意义可以简单看成是:下标为j的字符的前面最多k个字符与开始的k个字符相同,这里并不要求T[j] != T[k]。其实next[0]也可以定义为0(后面给出的求串的模式值的函数和串的模式匹配的函数,是next[0]=0的),这样,next[j]=k(0≤k<j)的意义都可以简单看成是:下标为j的字符的前面最多k个字符与开始的k个字符相同。第三种表示方法是第一种表示方法的变形,即按第一种方法得到的模式值,每个值分别加1,就得到第三种表示方法。第三种表示方法,我是从论坛上看到的,没看到详细解释,我估计是为那些这样的编程语言准备的:数组的下标从1开始而不是0。 下面给出几种方法的例子: 表一。 下标 0 1 2 3 4 5 6 7 8 T a b a b c a a b c (1) next -1 0 -1 0 2 -1 1 0 2 (2) next -1 0 0 1 2 0 1 1 2 (3) next 0 1 0 1 3 0 2 1 3 第三种表示方法,在我看来,意义不是那么明了,不再讨论。 表二。 下标 0 1 2 3 4 T a b c A c (1)next -1 0 0 -1 1 (2)next -1 0 0 0 1 表三。 下标 0 1 2 3 4 5 6 7 T a d C a d C a d (1)next -1 0 0 -1 0 0 -1 0 (2)next -1 0 0 0 1 2 3 4 对比串的模式值第一种表示方法和第二种表示方法,看表一: 第一种表示方法next[2]= -1,表示T[2]=T[0],且T[2-1] !=T[0] 第二种表示方法next[2]= 0,表示T[2-1] !=T[0],但并不管T[0] 和T[2]相不相等。 第一种表示方法next[3]= 0,表示虽然T[2]=T[0],但T[1] ==T[3] 第二种表示方法next[3]= 1,表示T[2] =T[0],他并不管T[1] 和T[3]相不相等。 第一种表示方法next[5]= -1,表示T[5]=T[0],且T[4] !=T[0],T[3]T[4] !=T[0]T[1],T[2]T[3]T[4] !=T[0]T[1]T[2] 第二种表示方法next[5]= 0,表示T[4] !=T[0],T[3]T[4] !=T[0]T[1] ,T[2]T[3]T[4] !=T[0]T[1]T[2],但并不管T[0] 和T[5]相不相等。换句话说:就算T[5]==’x’,或 T[5]==’y’,T[5]==’9’,也有next[5]= 0 。 从这里我们可以看到:串的模式值第一种表示方法能表示更多的信息,第二种表示方法更单纯,不容易搞错。当然,用第一种表示方法写出的模式匹配函数效率更高。比如说,在串S=“adCadCBdadCadCad 9876543”中匹配串T=“adCadCad”, 用第一种表示方法写出的模式匹配函数,当比较到S[6] != T[6] 时,取next[6]= -1(表三),它可以表示这样许多信息: S[3]S[4]S[5]==T[3]T[4]T[5]==T[0]T[1]T[2],而S[6] != T[6],T[6]==T[3]==T[0],所以S[6] != T[0],接下来比较S[7]和T[0]吧。如果用第二种表示方法写出的模式匹配函数,当比较到S[6] != T[6] 时,取next[6]= 3(表三),它只能表示:S[3]S[4]S[5]== T[3]T[4]T[5]==T[0]T[1]T[2],但不能确定T[6]与T[3]相不相等,所以,接下来比较S[6]和T[3];又不相等,取next[3]= 0,它表示S[3]S[4]S[5]== T[0]T[1]T[2],但不会确定T[3]与T[0]相不相等,即S[6]和T[0] 相不相等,所以接下来比较S[6]和T[0],确定它们不相等,然后才会比较S[7]和T[0]。是不是比用第一种表示方法写出的模式匹配函数多绕了几个弯。 为什么,在讲明第一种表示方法后,还要讲没有第一种表示方法好的第二种表示方法?原因是:最开始,我看严蔚敏的一个讲座,她给出的模式值表示方法是我这里的第二种表示方法,如图: 她说:“next 函数值的含义是:当出现S[i] !=T[j]时,下一次的比较应该在S[i]和T[next[j]] 之间进行。”虽简洁,但不明了,反复几遍也没明白为什么。而她给出的算法求出的模式值是我这里说的第一种表示方法next值,就是前面的get_nextval()函数。匹配算法也是有瑕疵的。于是我在这里发帖说她错了: http://community.csdn.net/Expert/topic/4413/4413398.xml?temp=.2027246 现在看来,她没有错,不过有张冠李戴之嫌。我不知道,是否有人第一次学到这里,不参考其他资料和明白人讲解的情况下,就能搞懂这个算法(我的意思是不仅是算法的大致思想,而是为什么定义和例子中next[j]=k(0≤k<j),而算法中next[j]=k(-1≤k<j))。凭良心说:光看这个讲座,我就对这个教受十分敬佩,不仅讲课讲得好,声音悦耳,而且这门课讲得层次分明,恰到好处。在KMP这个问题上出了点小差错,可能是编书的时候,在这本书上抄下了例子,在那本书上抄下了算法,结果不怎么对得上号。因为我没找到原书,而据有的网友说,书上已不是这样,也许吧。说起来,教授们研究的问题比这个高深不知多少倍,哪有时间推演这个小算法呢。总之,瑕不掩玉。 书归正传,下面给出我写的求第二种表示方法表示的模式值的函数,为了从S的任何位置开始匹配T,“当出现S[i] !=T[j]时,下一次的比较应该在S[i]和T[next[j]] 之间进行。” 定义next[0]=0 。 void myget_nextval(const char *T, int next[]) { // 求模式串T的next函数值(第二种表示方法)并存入数组 next。 int j = 1, k = 0; next[0] = 0; while ( T[j] != '\0' ) { if(T[j] == T[k]) { next[j] = k; ++j; ++k; } else if(T[j] != T[0]) { next[j] = k; ++j; k=0; } else { next[j] = k; ++j; k=1; } }//while for(int i=0;i<j;i++) { cout<<next[i]; } cout<<endl; }// myget_nextval 下面是模式值使用第二种表示方法的匹配函数(next[0]=0) int my_KMP(char *S, char *T, int pos) { int i = pos, j = 0;//pos(S 的下标0≤pos<StrLength(S)) while ( S[i] != '\0' && T[j] != '\0' ) { if (S[i] == T[j] ) { ++i; ++j; // 继续比较后继字符 } else // a b a b c a a b c // 0 0 0 1 2 0 1 1 2 { //-1 0 -1 0 2 -1 1 0 2 i++; j = next[j]; /*当出现S[i] !=T[j]时, 下一次的比较应该在S[i]和T[next[j]] 之间进行。要求next[0]=0。 在这两个简单示范函数间使用全局数组next[]传值。*/ } }//while if ( T[j] == '\0' ) return (i-j); // 匹配成功 else return -1; } // my_KMP 六.后话--KMP的历史 [这段话是抄的] Cook于1970年证明的一个理论得到,任何一个可以使用被称为下推自动机的计算机抽象模型来解决的问题,也可以使用一个实际的计算机(更精确的说,使用一个随机存取机)在与问题规模对应的时间内解决。特别地,这个理论暗示存在着一个算法可以在大约m+n的时间内解决模式匹配问题,这里m和n分别是存储文本和模式串数组的最大索引。Knuth 和Pratt努力地重建了 Cook的证明,由此创建了这个模式匹配算法。大概是同一时间,Morris在考虑设计一个文本编辑器的实际问题的过程中创建了差不多是同样的算法。这里可以看到并不是所有的算法都是“灵光一现”中被发现的,而理论化的计算机科学确实在一些时候会应用到实际的应用中。 本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/lin_bei/archive/2006/09/20/1252686.aspx

2011-06-12

c语言数据结构应用图的遍历.zip

创建图:包括建立结点的函数CreatVex(Graph *G),以及GreatUDG(Graph *G) ,GreatUDN(Graph *G) ,GreatDG(Graph *G) GreatDN(Graph *G) 1提示用户输入图的基本信息:顶点数,边数以及图的基本类型; 2通过for循环语句提示用户输入顶点的值; 3图Graph结构体类型包括:AdjList用来存储头结点的数组;int类型vexnum和arcnum,用来表示顶点数和边数的变量;int类型kind,用来存储图的类型。边ArcNode结构包括:adjvex,ArcNode *nextarc,int info前者表示指向的结点的下标,后者表示指向结点的下一条边结点,最后的变量为边所带的权值信息; 4根据图的类型决定是否要使用边中的info变量; 5提示用户按照正确的形式输入边的端点以及边上的权值信息; 遍历图:包括DFSTraverse(Graph G,VertexType vex)以及DFS(Graph G,int v)两个主要的便历函数。前者第二个参数表示开始进行便历的顶点,后者的第二个参数表示对图的下标为v的顶点访问。 1遍历前首先建立一个标志数组Visited[],长度为图中结点的数目,用来表示是否访问过一结点,访问前全置为0; 2接收用户要求开始访问的顶点,通过函数Adjfound(Graph G,VertexType c)找到改点在图的结点中的下标; 3若该下标对应的标志数组的值为0,访问该下标的firstArcNode结点,同时把该结点的在访问标志数组中的值设置为1;若该下标对应的标志数组的值为1,则进行第5步; 4继续进行操作2; 5在标志数组中查找仍为0的项,得到下标值再进行第1步操作;如果都访问过则遍历结束。 6退出程序。

2011-06-12

c语言程序设计停车场管理系统.zip

问题描述: 汽车在停车场内按车到达时间的先后顺序,依次由北向南排列(大门在最南端,最先到达的第一辆车放在车场的最北端),若车场内已停满车辆,则后来的汽车只能在门外的便道上等候,一旦有车开走,则排在便道上的第一辆车即可进入;当停车场内某辆车要离开时,在他之后进入的车辆必须先退出车场为它让路,待该辆车开出大门外,其他车辆再按原次序进入车场,每辆停放在车场的车在他离开时必须按他停留时间长短缴纳费用。以栈模拟停车场,以队列模拟车场外的便道,按照从中端读入的输入数据序列进行模拟管理。每一组输入数据进行包括三个数据项:汽车“到达”或“离去”信息、汽车牌照号以及到达或离去的时刻。车离开时,输出汽车应缴纳的停车费。 狭长停车场只有一个门可容纳n辆车,当在有车进来时须停在外面的便道上,当停车场里的车开走时,它后面的车须首先退出为它让道,之后再按原来的次序进入停车场,此时停在便道上的第一两车可以进入停车场,从终端输入数据包括车是离去还是到达,车牌号码,到达或者离去的时间,输出相关信息并输出相关停车费用,停在便道上车在未进停车场就离去不收费。 实现提示:用栈和队列,停车场要以栈实现,还须另外设一栈用来为让道停放退出来的车,便道上的车以队列实现,栈以顺序存储,而队列以链式存储。

2011-06-12

c语言课程设计迷宫求解.zip

问题描述:以一个m×n的长方形表示迷宫,0和1分别表示迷宫中的通路和障碍。设计一个程序,对任意设定的迷宫,求出一条从入口到出口的通路,或得出没有通路的结论。 基本要求:首先实现一个以链表作存储结构的栈类型,然后编写一个求解迷宫的非递归程序。求得的通路以三元组(i,j,d)的形式输出,其中:(i,j)指示迷宫中的一个坐标,d表示走到下一坐标的方向。如:对于下列数据的迷宫,输出的一条通路为:(1,1,1), (1,2,2), (2,2,2) (3,2,3), (3,1,2),…。 测试数据:迷宫的测试数据如下:左上角(1,1)为入口,右下角(9,8)为出口。 1 实现提示:计算机解迷宫通常用的是“穷举求解”方法,即从入口出发,顺着某一个方向进行探索,若能走通,则继续往前进;否则沿着原路退回,换一个方向继续探索,直至出口位置,求得一条通路。假如所有可能的通路都探索到而未能到达出口,则所设定的迷宫没有通路。可以用二维数组存储迷宫数据,通常设定入口点的下标为(1,1),出口点的下标为(n,n)。为处理方便起见,可在迷宫的四周加一障碍。对于迷宫任一位置,均可约定有东、南、西、北四个方向可通。

2011-06-11

c语言课程设计病房管理.zip

问题描述:一所医院中可能包括若干个病房,每个病房中又有若干个床位,建立一个简单的医院病房管理程序能够对病人进行出入院和床位分配进行管理。 基本要求: 此系统应具有如下功能: (1) I:初始化(Initialization)。建立病房和床位信息。此医院中可能包括若干 个病房,而每个病房中又有若干个床位。 (2) E:住院(enterhospital)。在列出的有空位的病房中,选择其一,入住。 (3) O:出院(Outhospital)。选择某一病房中某个病人,令其出院。 (4) Q:查询(Query)。查询每个病房中空床位数,入住病人数;查询整个医 院的空床位数和入住病人数。

2011-06-11

c语言栈结构事先 表达式求值.zip

表达式求值是程序设计语言编译中的一个最基本问题,它的实现是栈应用的一个典型例子. 搞了一天,有相关的好的算法请大家传上来,一起分享.

2011-06-11

ZStack协议栈.rar

TI公司推出的ZigBee协议栈ZStack,配合CC2530无线芯片可快速实现ZigBee开发

2018-03-13

Source Insight 4.0 破解版

最新Source Insight 4.0安装包,按README.txt破解即可

2018-03-12

nfs挂载超慢!!!

发表于 2016-06-16 最后回复 2016-08-08

提示
确定要删除当前文章?
取消 删除