斐波拉契数列。
简单说明:输入1时,结果有两种:0,1;输入2时,结果有00,01,10,输入三时,结果有000,001,010,100,101……无论输入几,总结过数都是最后一位为0的数字个数加上最后一位为1的数字个数,而当前一位要产生1,前一位最后只能是0,当前一位要产生0,前一位最后可以为1,也可以为0。
设O[i]、Z[i]分别表示i位数的最后一位为0的数和最后一位为1的数,f[i]表示i位数的总数,则f[i] = O[i] + Z[i]。又由以上分析,O[k] = Z[k-1] = O[k-2] + Z[k-2] = f[k-2], Z[k] = O[k-1] + Z[k-1] = f[k-1], So f[k] = O[k] + Z[k] = f[k-1] + f[k-2]。这不就是斐波拉契数列吗?f[1] = 2, f[2] = 3, f[k] = f[k-1] + f[k-2]。
看一个分类把这题分到dp了,但觉得不用dp很简单,就像代码中的样子写了,写完发现这题就一斐波拉契数列。ac代码中没有打斐波拉契数列表,但就是这种思路,都很简单。
好吧,第一次发贴,写的有点长了……这是在侮辱自己的智商还是低估了别人?
/*
*poj: 1953 World Cup Noise
*/
#include <iostream>
#include <cstring>
using namespace std;
int main()
{
int n;
cin >> n;
for(int i = 1; i <= n; i++) {
int num;
cin >> num;
if(num == 0) {
cout << "Scenario #" << i << ":" << endl;
cout << "0" << endl;
cout << endl;
continue;
}
long long pz = 1, po = 1; //前一个数的结果中最后一位有几个为1,0
long long nz = 1, no = 1; //当前结果中有几个为1,0
for(int j = 1; j < num; j++) {
nz = pz + po; //前一次为1的和0的下一位都可以是1
no = pz; //前一次为0的下一次可以为1
pz = nz;
po = no;
}
long long total = nz + no;
cout << "Scenario #" << i << ":" << endl;
cout << total << endl;
cout << endl;
}
return 0;
}