TP99 TP999

带你理解下啥是tp99

我们现在已有认知:一次请求从前端到后端的请求时间,这个接口的总时间=在网络耗时+服务端处理的耗时。这个通常是一个普通人可以关注到的点,也是最外漏的点。

但是刨去网络耗时外部原因,有没有对服务端处理真正的耗时进行过研究。

服务端耗时=请求到达服务端,服务端开始处理,到最后响应的时间。

接口tp99耗时:就是衡量接口性能的指标,tp99越低,接口性能越好。根据对一个 接口反复测试耗时时间,接口的平均耗时其实就约等于tp99耗时,拿着个值就可以去监控上配置,当接口的tp99耗时超过 这个值,就会触发报警,因为 我们认为接口超过to99耗时是不合理的。可以配置此项报警监控。

接口tp99耗时,就是帮助我们监控接口的一个指标,一旦超出了这个指标,我们就认为我们接口是存在问题的,此时我们需要对接口的内部逻辑 进行下梳理,看看到底那块耗时,我们是否能优化,

目前有很多 成熟的系统,对接口进行了各种监控,因为这是一项通用的指标,因此会被抽出来,他们会对接口的 性能、可用率进行监控。

目前还有很多成熟的系统,能对服务器进行监控,这也是一项通用的指标,因此会被抽出来,他们会对机器本身的指标cpu、磁盘、系统负载进行监控。

以上只是对单个服务进行了接口、机器本身的监控,实际在微服务时代由于各个服务之间相互调用,因此又产生了一项新的监控指标,就是监控服务和服务调用之间的调用链,这些监控都是服务上线之后需要去监控的,能帮助开发人员省去很多时间,有利于线上出问题后第一时间关注,

以下是专业的对tp99的说明

TP指标: TP50:指在一个时间段内(如5分钟),统计该方法每次调用所消耗的时间,并将这些时间按从小到大的顺序进行排序,取第50%的那个值作为TP50 值;配置此监控指标对应的报警阀值后,需要保证在这个时间段内该方法所有调用的消耗时间至少有50%的值要小于此阀值,否则系统将会报警。

TP90,TP99,TP999与TP50值计算方式一致,它们分别代表着对方法的不同性能要求,TP50相对较低,TP90则比较高,TP99,TP999则对方法性能要求很高

The tp90 is a minimum time under which 90% of requests have been served.

tp90 = top percentile 90

Imagine you have response times:

10s
1000s
100s
2s

Calculating TP is very simple:

1. Sort all times in ascending order: [2s, 10s, 100s, 1000s]

2. find latest item in portion you need to calculate.
2.1 For TP50 it will be ceil(4*0.5) = 2 requests. You need 2nd request.
2.2 For TP90 it will be ceil(4*0.9) = 4. You need 4th request.

3. We get time for the item found above. TP50=10s. TP90=1000s

可以认为 TP90的意思是保证90%请求都能被响应的最小耗时。

<think>嗯,用户想知道ixChariot如何统计TP99时延。首先,我得回忆一下ixChariot是什么工具。ixChariot是用于网络性能测试的,可以模拟各种流量,测量带宽、时延、抖动等指标。TP99时延,也就是99百分位时延,是指99%的请求的响应时间都低于这个值,剩下的1%可能更高。这在评估网络性能时很重要,尤其是对高要求的应用来说,比如实时通信或金融交易系统。 接下来,我需要确定ixChariot是如何计算这个指标的。根据之前了解,ixChariot在测试过程中会记录每个事务(transaction)的时延数据。事务可能对应一个请求-响应对。统计TP99需要收集所有事务的时延数据,并按从小到大排序,然后取第99百分位的位置。例如,如果有1000个数据点,第990个就是TP99的值。但实际中数据量可能不是整数,所以可能需要插值法。 不过,ixChariot具体在报告中是否直接提供TP99呢?可能需要查看其报告选项或配置。有些工具可能默认只提供平均时延、最大、最小,而百分位数可能需要特别设置。用户可能需要配置ixChariot在测试时记录详细的时延数据,或者导出原始数据后用其他工具(如Excel、Python)计算TP99。 另外,ixChariot可能有不同的端点(endpoints)配置,比如IxLoad或其他组件,是否影响数据收集方式?需要确认测试脚本的设置,是否启用了详细统计信息。可能在高级设置里可以选择收集百分位数数据,或者在结果分析模块中生成。 如果用户没有看到直接的TP99结果,可能需要指导他们如何导出原始时延数据,然后自行计算。例如,导出为CSV文件,将所有时延数据排序,找到对应百分位的位置。或者使用脚本自动化处理。 还要注意,TP99的计算是否正确,是否考虑了所有事务,是否有过滤掉异常值或错误的数据。测试时长是否足够,数据量是否足够大,以确保统计意义的准确性。 总结来说,回答需要涵盖ixChariot的基本数据收集方法,如何配置以获取详细数据,直接报告的可能性,以及如何通过导出数据自行计算TP99。同时提醒用户注意数据量和正确性。</think>ixChariot 是一款用于网络性能测试的工具,主要用于测量带宽、时延、抖动等关键指标。在统计 **TP99 时延(99th Percentile Latency)** 时,其核心逻辑是通过对测试过程中所有事务(Transaction)的时延数据进行排序,并取第 99 百分位的值。以下是具体实现方式和工作原理的说明: --- ### **1. TP99 时延的定义** TP99 时延表示 **99% 的请求的时延低于该值**,仅有 1% 的请求时延可能超过此值。它反映了网络在高负载或极端情况下的性能表现,常用于评估服务质量的稳定性。 --- ### **2. ixChariot 如何统计 TP99** #### **(1) 数据收集** - **事务级时延记录**:ixChariot 在测试过程中会记录每个事务(Transaction)的时延数据。一个事务通常对应一次完整的请求-响应过程。 - **原始数据存储**:所有事务的时延数据会被保存为原始数据集,用于后续分析。 #### **(2) 排序与计算** - **排序**:将所有事务的时延按从小到大排序。 - **定位 TP99**: 假设总事务数为 \( N \),则 TP99 的位置为 \( P = 0.99 \times N \)。 例如:若有 1000 个事务,TP99 对应第 \( 990 \) 个事务的时延值(若 \( P \) 非整数,则可能通过插值法计算)。 #### **(3) 结果输出** - **直接报告**:部分版本的 ixChariot 或配套分析工具(如 IxLoad)可能在报告中直接提供 TP99 时延。 - **间接导出**:若工具未直接支持,需导出原始时延数据,通过外部工具(如 Excel、Python)计算。 --- ### **3. 操作步骤(示例)** 1. **配置测试脚本**:在 ixChariot 中设置需要测试的业务流(如 TCP/UDP 流量)。 2. **启用详细日志**:确保勾选记录每个事务的时延(需在高级设置中确认)。 3. **运行测试**:执行测试并生成结果。 4. **获取数据**: - **方法 1**:直接查看报告中的 **"Latency Distribution"** 或 **"Percentile Latency"** 部分(若支持)。 - **方法 2**:导出时延数据(如 CSV 文件),用以下公式计算: ```python import numpy as np latency_data = [...] # 从文件读取时延数据 tp99 = np.percentile(latency_data, 99) ``` --- ### **4. 注意事项** - **数据量要求**:TP99 的统计需足够多的样本(建议至少 1000 个事务),否则结果可能不准确。 - **测试场景设计**:需模拟真实业务负载,确保结果反映实际网络性能。 - **工具版本差异**:不同版本的 ixChariot 功能可能不同,建议查阅官方文档或升级到支持百分位数统计的版本(如结合 IxLoad 使用)。 --- 如果需要更具体的操作指导(如导出数据步骤或脚本示例),可以进一步说明您的测试环境和工具版本!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值