Tailor智能剪辑视频开源整合包,独特的人脸识别锁定视频人物画面和语音捕捉剪辑精准无比,先进的视频字幕生成、背景更换、字幕消除、目标消除,应用人工智能进行视频处理,省时省力,剪映最佳平替方案

一、Tailor软件介绍(文末提供下载链接)

        Tailor 是令人惊叹的视频编辑神器!其人脸和语音剪辑精准无比,人脸识别能锁定人物画面,语音捕捉和裁剪独具魅力。视频生成方面,口播生成赋予图像灵魂,字幕生成准确契合,色彩生成让黑白鲜活,音频生成创造无限可能。优化上,背景更换如入奇幻世界,流畅度与清晰度也极佳。Tailor 不仅是软件,更是创意与精彩的钥匙,无论专业或普通爱好者都能借此让作品闪耀,快来体验它带来的震撼惊喜!

github地址:https://github.com/FutureUniant/Tailor

本文信息图片均来源于作者GitHub地址

主界面
主界面

二、功能介绍

      Tailor包括了视频剪辑、视频生成和视频优化3大类视频处理方向,共10种方法。下面将依次进行介绍:

1、视频剪辑

(1)人脸剪辑

       Tailor 拥有神奇的人脸识别技术,能自动从视频中捕捉每一个精彩的人脸瞬间。你只需轻轻一点,就能选择关注的人脸,Tailor 会像魔法一样为你自动裁剪出相关视频,让你的主角时刻闪耀!

(2)语音剪辑

       Tailor 还能智能识别视频中的语音内容,并将其清晰地展示出来。你可以根据自己的需求,选择感兴趣的语音部分,Tailor 会精准地裁剪出你想要的内容,让你的视频更加精彩。

2、视频生成

(3)口播生成

       只需上传一张带有人脸的图像,选择喜欢的语音音色,输入想要生成的文字内容,Tailor 就能瞬间为你生成一个对应语音口型的有声视频。让你的创意轻松实现,打造出独一无二的视频作品!

(4)字幕生成

       通过智能识别音视频内容,Tailor 能自动将其转化为文字,并提供多种字体和颜色供你选择。字幕将与视频完美同步,让你的视频更加易懂,更具吸引力。

(5)色彩生成

      Tailor 拥有一键式黑白视频上色功能,能让那些陈旧的黑白视频瞬间焕发出绚丽的色彩。仿佛时光倒流,让经典重现生机!

(6)音频生成

       该功能可以为静态图和文字赋予生命,将它们转化为生动的视频。静态图将变成视频的图像部分,文字则通过文字转语音技术变成视频的语音部分,让你的创意无限延伸。

(7)语言更换

       Tailor 拥有令人称奇的语言更换能力!它仿佛是一个神奇的语言魔法师,能将视频中的语音瞬间转换成你想要的语言。让你的视频瞬间具备了国际化的魅力,能跨越语言的障碍,与全世界的观众进行最亲密的交流,带来无尽的惊喜与可能!

3、视频优化

(8)背景更换

       Tailor 能智能地识别前景中的人物,并将其与背景分离。你可以轻松更换背景图像(也可为视频),创造出各种奇幻的场景,让你的视频更加引人入胜。

(9)流畅度优化

       Tailor 采用先进的技术,能有效提高视频的流畅度。让原本卡顿、跳帧的视频变得流畅丝滑,如同行云流水一般,给观众带来极致的观看体验。

(10)清晰度优化

       对于清晰度较低的视频,Tailor 能进行清晰度的提升。告别“马赛克”,让你的视频画面更加清晰锐利,细节尽显无疑。

(11)字幕消除

      消除视频中的字幕。无论是自制视频想要重新编辑视频,还是想获得无字幕的纯净画面,此功能都能轻松应对。例如处理电影片段或教学视频,为您带来全新体验。

(12)目标消除

       消除视频中期望消除的目标。只需轻轻点击鼠标,Tailor就能自动跟踪并消除视频中的目标,无论是不想要的路人、杂物,还是瑕疵,都能轻松去除。无需复杂操作,智能算法快速响应,让你的视频瞬间变得干净整洁。

(13)局部处理

       局部处理功能可以对特定的人物、物品等进行视觉聚焦或者色彩灰度处理。无论是想要突出画面中的主角,还是营造独特的艺术氛围,都能轻松实现,为你的视频增添更多创意元素。

三、安装与运行

      1、普通使用者:(推荐使用此方法)

       下载解压包后,解压缩后双击安装tailor.exe,即可使用(支持系统win),整合包在文章末位提供下载。

        2、开发使用者

        该模式适合编程想改进项目的朋友:开发者模式则需要下载代码,配置对应的Python环境,初始化Tailor启动需要的环境,然后运行main.py启动Tailor。

       1、前提条件

  • Python 3.x (推荐使用 Python 3.10)
    Python 3.x (建议使用 Python 3.10)

  • 必要的Python库(在 requirements.txt 文件中列出部分重要Python库,其他库根据需要进行安装)

       2、开发步骤

      (1)、克隆本项目到本地

git https://github.com/FutureUniant/Tailor.git 
cd Tailor

       (2)、(可选)如果期望Tailor使用GPU加速,确保CUDA和cuDNN已正确安装。

       (3)、安装Python依赖库

pip install -r requirements.txt

        (4)、安装FFMPEG和ImageMagic 安装 FFMPEG 和 ImageMagic

  1. 安装FFMPEG

    1. 在FFMPEG官网下载FFMPEG-6.1.1版本
    2. 将下载的.7z压缩包解压到Tailor根目录下的extensions文件夹下
      注意:解压的FFMPEG的文件夹请保持ffmpeg-6.1.1-essentials_build名称
  2. 安装ImageMagic 安装 ImageMagic

    1. 在ImageMagic官网下载ImageMagic-7.1.1-29版本
    2. 将下载的.zip压缩包解压到Tailor根目录下的extensions文件夹下 注意:解压的ImageMagic的文件夹请保持ImageMagick-7.1.1-29-portable-Q16-x64名称

        (5)、启动Tailor

python main.py

四、快速入门

  1. 打开/新建Tailor项目:
    1. 主界面点击左侧新建按钮,填写工程名称工程位置,即可新建Tailor项目;
    2. 主界面点击左侧打开按钮,直接选择Tailor项目地址;
    3. 主界面右侧双击展示的Tailor项目;
    4. 主界面右侧展示的Tailor项目右键,然后点击打开
    5. 若使用Tailor安装包安装,可以直接双击.tailor文件打开项目。
  2. 视频导入
    选择文件-导入进行待处理视频的导入。
    注意:部分视频生成类的功能不需要导入视频。
  3. 视频处理
    选择对应的视频处理方法,按照使用提示即可使用。

五、下载地址链接(win版本)

夸克网盘分享

在使用Python进行视频字幕的自动提取时,我们往往需要借助于计算机视觉技术来处理图像数据,同时调用专业的OCR接口来识别图像中的文字。这里,百度AI的OCR接口是一个非常实用的工具,它可以将视频中的图像帧转化为可编辑的文本。 参考资源链接:[Python实现视频字幕提取与百度AI识别](https://wenku.csdn.net/doc/6401acf1cce7214c316edb65) 首先,我们需要安装并导入必要的Python库,括`cv2`用于图像处理,`requests`用于网络请求,以及`baidu-aip`库中的`AipOcr`模块用于调用百度OCR API。然后,我们通过`tailor_video()`函数将视频拆分为单帧图片,这一步骤可能需要对视频的帧率进行控制,以获得清晰且适合识别的图像。 接着,针对每张图片进行预处理,主要是为了提高OCR的识别准确性。这括图像的灰度化处理,以及可能的图像裁剪来定位字幕区域。灰度化处理可以使用`cv2.cvtColor()`函数将图像从RGB转换为灰度图,这有助于减少计算复杂度。图像裁剪则需要根据字幕的常见位置来设定裁剪的区域,这可能涉及到图像中特定区域的定位技术。 预处理完成后,我们调用百度OCR API进行文字识别。在这个过程中,需要使用到`AipOcr`类,我们需先对其进行实例化,并在调用`generalBasic`方法时,传递需要识别的图像(通常经过base64编码),以及设置相关的OCR参数,如`language_type`指定识别语言类型,`detect_direction`指定是否需要检测文字方向等。识别结果将以JSON格式返回,我们需要从返回的数据中提取出识别的文字,并将其保存到文本文件中。 通过以上步骤,我们可以将视频中的字幕部分提取出来,并转换为文本文件。整个过程不仅需要我们对Python编程API调用有足够的理解,还需要我们对图像处理计算机视觉有一定的认识。如果希望更深入地了解整个视频字幕提取OCR识别的流程,可以参考《Python实现视频字幕提取与百度AI识别》这本书。该资源详细介绍了从视频处理到文字识别的完整步骤,并提供实战项目代码,对于想要提升相关技能的开发者来说,是一个非常宝贵的资源。 参考资源链接:[Python实现视频字幕提取与百度AI识别](https://wenku.csdn.net/doc/6401acf1cce7214c316edb65)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值