1. 高斯概率密度函数的积分
令
I=∫+∞−∞exp(−12σ2x2)dx
它的平方则为:
I2=∫+∞−∞∫+∞−∞exp(−12σ2x2−12σ2y2)dxdy
将坐标 (x,y) 转为极坐标 (r,θ) ,则有:
x=rcos(θ)y=rsin(θ)
所以:
I2=∫2π0∫∞0exp(−r22σ2)rdrdθ=2π∫∞0exp(−u2σ2)12du=π[exp(−u2σ2)(−2σ2)]∞0=2πσ2
从而我们有
∫+∞−∞N(x|μ,σ2)dx=1
2. 高斯分布的期望
该推导来自http://math.stackexchange.com/
高斯分布的概率密度函数为:
fX(x)=1σ2π−−√exp{−(x−μ)22σ2}
其中 σ>0 。根据期望的定义,我们有:
E(X)=∫∞−∞x1σ2π−−√exp{−(x−μ)22σ2}dx
根据积分原理, 令y=x−μ
E(X)=∫∞−∞(y+μ)1σ2π−−√exp{−y22σ2}dy=∫∞−∞y1σ2π−−√exp{−y22σ2}dy+∫∞−∞μ1σ2π−−√exp{−y22σ2}dy[1]
第一部分用 I1 表示:
I1=∫∞−∞x1σ2π−−√exp{−x22σ2}dx
显然函数
f(x)=x1σ2π−−√exp{−x22σ2}
是一个奇函数(因为 f(x)=−f(−x) ),其对称区间的积分等于0。因此我们有
I1=0
所以我们有
E(X)=∫∞−∞μ1σ2π−−√exp{−x22σ2}dx=μ∫∞−∞1σ2π−−√exp{−x22σ2}dx
运用 第一节的证明 我们就有
E(x)=μ∫+∞−∞N(x|μ′=0,σ2)dx=μ
3. 高斯分布的方差
Var(X)=∫∞−∞(x−μ)21σ2π−−√exp{−(x−μ)22σ2}dx
∫∞−∞(x−μ)21σ2π−−√exp{−(x−μ)22σ2}dx=∫∞−∞x21σ2π−−√exp{−x22σ2}dx
=σ2√∫∞−∞(σ2√x)21σ2π−−√exp{−(σ2√x)22σ2}dx=σ24π√∫∞0x2e−x2dx
令 t=x2 ,则有 dt=2xdx=2t√dx⇒dx=(2t√)−1dt ,带入上式:
V(X)=σ24π√∫∞0(t√)2(2t√)−1e−tdt=σ24π√12∫∞0t32−1e−tdt=σ24π√12Γ(32)
⇒V(X)=σ24π√12π√2=σ2
Γ() 为 伽马函数