引言
起因是最近发现一个很有趣的问题,当我的docker容器迁移到另一台服务器去,因为GPU版本不一致导致项目启动是会报错为:
CUDA error: CUDA_ERROR_NO_DEVICE
no CUDA-capable device is detected
而我使用的框架也同样提示 Decoder not initialized 由此,想写篇博文记录一下相关的问题。
问题分析
nvidia-docker的安装与启动可以看我上一篇文章中有介绍:
docker学习笔记(9):nvidia-docker安装、部署与使用
这里想分析一下nvidia-docker的原理,原理图可以看如下图:

CUDA Driver API:GPU设备的抽象层,通过提供一系列接口来操作GPU设备,性能最好,但编程难度高,一般不会使用该方式开发应用程序。
CUDA Runtime API:对CUDA Driver API进行了一定的封装,调用该类API可简化编程过程,降低开发难度;
CUDA Libraries:是对CUDA Runtime API更高一层的封装,通常是一些成熟的高效函数库,开发者也可以自己封装一些函数库便于使用;
应用程序可调用CUDA Libraries或者CUDA Runtime API来实现功能,当调用CUDA Libraries时,CUDA Libraries会调用相应的CUDA Runtime API,CUDA Runtime API再调用CUDA Driver API,CUDA Driver API再操作GPU设备。
要在容器内操作GPU设备,需要将GPU设备挂载到容器里,Docker可通过–device挂载需要操作的设备,或者直接使用特权模式(不推荐)。NVIDIA Docker是通过注入一个 prestart 的hook 到容器中,在容器自定义命令启动前就将GPU设备挂载到容器中。至于要挂载哪些GPU,可通过NVIDIA_VISIBLE_DEVICES环境变量控制。
不管中间api实现得多复杂,最后还是需要去调用宿主机的CUDA driver,但是这样就会产生很多问题了,如果是两台服务器的驱动不一致,或者并不清楚到底对不对(比如说云环境。。),拿到一台新服务器没有进行版本检查,而导致了问题,可能可以尝试如下方式。
问题解决
这里会出现的情况有很多,比如说我们首先检查pytorch或者tensorflow的GPU是不是对的,可以运行如下代码。
pytorch的为:
# 直接看当前torch有没有调用cuda
import torch
flag = torch.cuda.is_available(

最低0.47元/天 解锁文章
325

被折叠的 条评论
为什么被折叠?



