#莫比乌斯反演,整除分块,线性筛#洛谷 2522 bzoj 2301 problem b

题目

axb,cyda\leq x\leq b,c\leq y\leq dgcd(x,y)=kgcd(x,y)=k的个数


分析

其实只要做了洛谷 3455就会理解很多
蒟蒻的题解
然后这道题可以用前缀和表达出来
TotalAns=Ans(b,d)Ans(a1,d)Ans(b,c1)+Ans(a1,c1)TotalAns=Ans(b,d)-Ans(a-1,d)-Ans(b,c-1)+Ans(a-1,c-1)
那么如何求一个呢
f(k)=i=1nj=1m[gcd(i,j)=k]f(k)=\sum_{i=1}^{n}\sum_{j=1}^{m} [gcd(i,j)=k]
F(d)=kdf(k)=ndmdF(d)=\sum_{k|d}f(k)=\lfloor\frac{n}{d}\rfloor\lfloor\frac{m}{d}\rfloor
根据莫比乌斯反演可以得到
f(k)=kdμ(dk)×F(d)f(k)=\sum_{k|d}\mu(\lfloor\frac{d}{k}\rfloor)\times F(d)
Ans=kdμ(dk)×F(d)Ans=\sum_{k|d}\mu(\lfloor\frac{d}{k}\rfloor)\times F(d)
枚举dk\lfloor\frac{d}{k}\rfloor,那么也就是
Ans=i=1min{n,m}μ(i)×nid×midAns=\sum_{i=1}^{min\{n,m\}}\mu(i)\times\lfloor\frac{n}{i*d}\rfloor\times\lfloor\frac{m}{i*d}\rfloor
接着用整除分块一波推就好了


代码

#include <cstdio>
#define rr register
#define min(a,b) ((a)<(b))?(a):(b)
#define N 50000
using namespace std;
typedef unsigned uit;
uit cnt,mu[N+1],v[N+1],prime[N+1];
inline signed iut(){
    rr uit ans=0; rr char c=getchar();
    while (c<48||c>57) c=getchar();
    while (c>47&&c<58) ans=(ans<<3)+(ans<<1)+c-48,c=getchar();
    return ans;
}
inline void iiiii(){//线性筛莫比乌斯函数
    mu[1]=1;
    for (rr uit i=2;i<=N;++i){
        if (!v[i]) v[i]=i,prime[++cnt]=i,mu[i]=-1;
        for (rr uit j=1;j<=cnt&&prime[j]*i<=N;++j){
            v[i*prime[j]]=prime[j];
            if (i%prime[j]==0) break;
            mu[i*prime[j]]=-mu[i];
        }
    }
    for (rr uit i=2;i<=N;++i) mu[i]+=mu[i-1];
}
inline void print(uit ans){
    if (ans>9) print(ans/10);
    putchar(ans%10+48);
}
inline signed answ(uit n,uit m,uit k){
    rr uit ans=0,t=min(n,m);
    for (rr uit l=1,r;l<=t;l=r+1){
        r=min(n/(n/l),m/(m/l));//确定区间
        ans+=(n/l/k)*(m/l/k)*(mu[r]-mu[l-1]);//计算答案
    }
    return ans;
}
signed main(){
    iiiii();
    for (rr uit t=iut();t;--t){
        rr uit a=iut(),b=iut(),c=iut(),d=iut(),k=iut();
        rr uit ans=answ(b,d,k)+answ(a-1,c-1,k)-answ(b,c-1,k)-answ(a-1,d,k);
        if (ans) print(ans); else putchar(48); putchar(10);
    }
    return 0;
}
发布了703 篇原创文章 · 获赞 24 · 访问量 6万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: Age of Ai 设计师: meimeiellie

分享到微信朋友圈

×

扫一扫,手机浏览